
Dynace Windows Development System
User Manual
Version 4.03
July 24, 2020

by Blake McBride

Copyright c© 1996 Blake McBride All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

MS-DOS, Windows and Microsoft are registered trademarks of Microsoft Corporation.
WATCOM is a trademark of WATCOM Systems, Inc. All Borland products are trade-
marks or registered trademarks of Borland International, Inc. TEX is a trademark of the
American Mathematical Society. Other brand and product names are trademarks or regis-
tered trademarks of their respective holders.

This manual was typeset with the TEX typesetting system developed by Donald Knuth.

i

Short Contents

1 Introduction . 1
2 Concepts . 9

3 Mechanics . 17

4 Library Reference . 23

Method Index . 215

c© 1995-1996 Blake McBride

iii

Table of Contents

1 Introduction . 1
1.1 Overview . 1
1.2 Benefits . 2
1.3 A Short Example . 2
1.4 Features . 3
1.5 Reasons to use WDS . 3
1.6 Installation . 4
1.7 Contents . 4
1.8 Learning The System . 5
1.9 Examples & Tutorial . 6
1.10 Manual Organization . 7
1.11 Support, Contact & Upgrades . 7
1.12 Use, Copyrights & Trademarks . 8
1.13 Credits . 8

2 Concepts . 9
2.1 Windows . 9

2.1.1 Main Window . 9
2.1.2 Child Window . 9
2.1.3 Popup Window . 9

2.2 Menus . 10
2.3 Dialogs . 10

2.3.1 Modal Dialogs . 10
2.3.2 Modeless Dialogs . 10

2.4 Controls . 10
2.4.1 Text Control . 10
2.4.2 Numeric Control . 10
2.4.3 Date Control . 11
2.4.4 Push Button . 11
2.4.5 Check Box . 11
2.4.6 Radio Button . 11
2.4.7 List Box . 11
2.4.8 Combo Box . 11
2.4.9 Scroll Bar . 11

2.5 Help System . 11
2.6 Cursors . 11

2.6.1 System Cursors . 11
2.6.2 External Cursors . 12

2.7 Icons . 12
2.7.1 System Icons . 12
2.7.2 External Icons . 12

2.8 Fonts . 12

c© 1995-1996 Blake McBride

iv Dynace Windows Development System Manual

2.8.1 System Fonts . 12
2.8.2 External Fonts . 12

2.9 Brushes . 12
2.9.1 System Brushes . 12
2.9.2 Stock Brushes . 13
2.9.3 Solid Brushes . 13
2.9.4 Hatch Brushes . 13

2.10 Pens . 13
2.10.1 Stock Pens . 13
2.10.2 Custom Pens . 13

2.11 Common Dialogs . 13
2.11.1 Color Dialog . 13
2.11.2 Font Dialog . 13
2.11.3 File Dialog . 13
2.11.4 Print Dialog . 13

2.12 Printing . 14
2.13 Resources . 14
2.14 Dynamic Link Libraries (DLL) . 14
2.15 Win16, Win32, Win32s . 15
2.16 Message Passing Architecture . 16

3 Mechanics . 17
3.1 Build Modes . 17
3.2 IDE Build Setup . 17

3.2.1 Microsoft IDE . 17
3.2.2 Borland IDE . 17
3.2.3 Symantec IDE . 18

3.3 DMAKE Build Setup . 18
3.4 Building Dynace & WDS From Scratch . 18
3.5 Examples Setup . 19
3.6 Example Files . 19
3.7 Building The Examples . 20
3.8 Debugging With The IDE . 21
3.9 Building Your Own Application . 21
3.10 DMAKE . 21
3.11 DPP . 21

4 Library Reference . 23
4.1 A Note To Dynace Language Users . 23
4.2 Class Hierarchy . 23
4.3 Application . 25
4.4 Windows . 36

4.4.1 Main Window . 68
4.4.2 Child Windows . 69
4.4.3 Popup Windows . 70

4.5 Printing . 71
4.6 Menus . 84

c© 1995-1996 Blake McBride

v

4.6.1 External Menus . 88
4.6.2 Internal Menus . 90

4.7 Popup Menus . 92
4.8 Dialogs . 95

4.8.1 Standard Dialog Method Arguments . 95
4.8.2 Dialog Methods . 95
4.8.3 Modal Dialogs . 113
4.8.4 Modeless Dialogs . 114

4.9 Controls . 116
4.9.1 Standard Control Method Arguments . 116
4.9.2 Control Methods . 116
4.9.3 Text Control . 122
4.9.4 Numeric Control . 128
4.9.5 Date Control . 134
4.9.6 Push Buttons . 138
4.9.7 Check Boxes . 140
4.9.8 Radio Buttons . 144
4.9.9 List Boxes . 148
4.9.10 Combo Boxes . 157
4.9.11 Scroll Bars . 169
4.9.12 Custom Controls . 174

4.10 Cursors . 174
4.10.1 System Cursors . 175
4.10.2 External Cursors . 176

4.11 Icons . 177
4.11.1 System Icons . 179
4.11.2 External Icons . 180

4.12 Fonts . 181
4.12.1 System Fonts . 184
4.12.2 External Fonts . 184

4.13 Brushes . 186
4.13.1 Stock Brushes . 188
4.13.2 Solid Brushes . 188
4.13.3 System Brushes . 189
4.13.4 Hatch Brushes . 190

4.14 Pens . 191
4.14.1 Stock Pens . 193
4.14.2 Custom Pens . 193

4.15 Help System . 194
4.16 Common Dialogs . 197

4.16.1 File Selection Dialog . 197
4.16.2 Printer Selection and Configuration Dialog 202
4.16.3 Color Selection Dialog . 205
4.16.4 Font Selection Dialog . 208

4.17 Dynamic Link Libraries . 212

Method Index . 215

c© 1995-1996 Blake McBride

1

1 Introduction

The Dynace Windows Development System (WDS) is a Dynace class library which enables
a C programmer with no knowledge of C++, Dynace, the Windows API or message-driven
architecture to write real Windows applications with an absolute minimum learning curve
and number of lines of code. In fact, it is possible to become familiar enough with windows,
menus, dialogs and controls using WDS to write a Windows application after just one day!

The programmer is able to write the application using familiar C in a familiar procedural
fashion. Instead of taking the usual fifty plus lines of code necessary to implement a typical
“Hello World” program, with WDS it takes four lines of code! Fully functional menus and
dialogs can be implemented with WDS in a handful of lines instead of the hundreds it takes
using the Windows API or other available tools.

WDS applications are portable across Win32 which is the Windows GUI API. It is also
portable to Linux and Mac via the Wine system.

Dynace (pronounced dī-ne-sē), what WDS is based upon, stands for a “DYNAmic C
language Extension”. It is an object oriented extension to the C or C++ languages. Dynace
is written in the C language and designed to be as portable as possible. It solves many
problems associated with C++ and adds features previously only available in languages such
as CLOS or Smalltalk without their overhead. Dynace is fully documented in another
manual.

1.1 Overview

The C language is the most popular and well known among the language choices available
for the PC and Unix environments. Therefore, there are many more programmers who know
and feel comfortable with the C language than any other. All the popular tools available for
software development under Windows use the C++ language. C++ is a complex superset of
the C language with questionable benefits. There is a significant learning curve associated
with going from proficient C ability to C++.

Although the currently available tools for Windows development, which work in associ-
ation with C++, provide a very high degree of flexibility and power, they are tremendously
complex to learn and use effectively. Given the tremendous complexity of both the Win-
dows development tools currently available on the market and the fact that these tools are
all based on C++, the time necessary for a normal C programmer to become knowledgeable
and proficient in Windows development, including both C++ and the Windows tools, is an
absolute minimum of six months. This time may vary to a period exceeding a year.

The currently available tools require an enormous amount of code (lines of program text)
in order to achieve the most fundamental functionality. Although the current tools actually
generate most of this code, the bottom line is that any real life application will end up
having an enormous amount of code. There is a clear relationship between lines of code
and a) how maintainable a program is for finding bugs or making enhancements, and b)
how difficult it is for new programmers to get up to speed with respect to the new tools

c© 1995-1996 Blake McBride

2 Dynace Windows Development System Manual

and application. Given the cost of software development and the tremendous backlog, this
issue is of paramount importance.

The focus of WDS is to enable a normal C programmer to learn and be able to write
and understand a fundamental Windows program in one day. Given just a little more time
with WDS (in terms of days), the programmer will be able to write and understand real
Windows applications in a minimum amount of time and with a very minimum amount of
code. There’s no need to learn a new language, such as C++. The programmer may use his
existing knowledge in C and just needs to learn a very high level and simple to understand
set of tools. Instead of taking hundreds of lines of code to add a new dialog, as required
by the existing tools, WDS can accomplish the same task in half a dozen lines. Instead of
taking up to one hundred lines of code just to bring up the main application window, WDS
just requires four lines!

1.2 Benefits

There are three main benefits to using WDS over the other available options. The first
is that the learning curve associated with Dynace for Windows allows a programmer or
programming team to get up-to-speed with respect to Windows programming in an absolute
minimum amount of time. The difference in time is days instead of six months or more.
This directly translates into saved dollars and increases the success of projects.

The second main benefit is that since application features may be implemented in tens
of lines of program code, instead of the hundreds or thousands of lines required by existing
tools, applications may be developed in a drastically reduced time frame.

The third main benefit is that since WDS is so easy to learn and requires so few lines
of code for application development, applications developed with WDS are much easier to
debug, maintain and enhance. Programmer turnover is much less a problem due to the fact
that new programmers can get up-to-speed in a minimum amount of time.

With WDS there is never a need for a code generator or wizard since so few lines are
needed to create the application. All your code is application specific.

In short, WDS is an invaluable tool for Windows application development during the
learning, development, and maintenance phases of application development. WDS is also
portable to Linux and Mac via the Wine package.

1.3 A Short Example

The following complete example illustrates how easy it is to get started with WDS. Imple-
menting this exact functionality using the Windows API would take more then fifty lines
of code!

c© 1995-1996 Blake McBride

Chapter 1: Introduction 3

#include "generics.h"

int start()

{

object win;

win = vNew(MainWindow, "My Test Application");

vPrintf(win, "Hello, World!\n");

return gProcessMessages(win);

}

1.4 Features

This section enumerates some of the key features of The Dynace Windows Development
System (WDS).

• Drastically reduces the learning curve associated with Windows development

• Drastically reduced the lines of code necessary to build Windows apps

• Applications are portable between Windows 3.1 (Win16), Win32s, Windows 95 and
Windows NT

• Applications are easier to debug, enhance and pass off to new programmers since it is
straight C and so few lines

• Full support for main, popup and child windows, menus, modal and modeless dialogs,
cursors, icons, fonts, brushes, and pens

• Support for all standard Windows controls as well as several supplied controls

• Easy to use routines for printing reports

• Support for most of the Windows common dialogs

• Compiles with a regular C or C++ compiler – not an interpreter – runs FAST!

• Full support for the Windows help system at all levels of context

• Support for external DLL access

• Access of full source code to WDS

• Applications are royalty free (with the appropriate license)

1.5 Reasons to use WDS

The following lists several reasons to use the Dynace Windows Development System:

1. Drastically reduce the learning curve associated with learning to write for Windows
– be able to write real Windows applications in a few days instead of the normal 6
months to a year learning curve.

2. Be able to write Windows apps fast using only a few lines of code – do “Hello World”
in 4 lines, menus and dialog in a few lines – write completely functional dialogs in a
handful of lines instead of the hundreds it normally takes.

c© 1995-1996 Blake McBride

4 Dynace Windows Development System Manual

3. Drastically reduce the time necessary to debug, maintain and enhance the app since
it’s so few lines of code.

4. Write apps which are portable to 16 and 32 bit environments including Windows 3.1
(Win16), Win32s, other Windows (Win32).

5. Be much less dependent on a few “expert” programmers since the code is much easier
to follow and learn.

6. No need to learn a new language since WDS apps are normal C code.

7. Don’t be the victim of a vendor since WDS comes with full source code.

8. Be able to take advantage of the very advanced object oriented capabilities of the
Dynace Object Oriented Extension to C, which WDS is built on top of.

9. Your apps will run very fast since they are compiled into optimized machine code by
your compiler.

10. Integrates well with existing compiler vendor’s IDEs. No need to learn a new set of
tools.

11. It’s easier to port non-Windows apps to Windows with WDS since WDS encapsulates
much of the message-driven architecture associated with Windows programming.

12. WDS applications are royalty free (with the appropriate license).

1.6 Installation

The diskette(s) distributed with Dynace are standard DOS formatted diskette(s). The files
on the diskette(s) have been compressed in order to reduce the quantity of diskettes.

See the file README, located on the first disk, for installation instructions.

1.7 Contents

Once the system has been installed there will exist a series of directories under the dynace
directory. The system will contain the following directories:

\DYNACE
This is the root of the Dynace system.

\DYNACE\LIB
This is the location of all the Dynace libraries. You may wish to add this
directory to the list of paths your linker searches.

\DYNACE\INCLUDE
This is the location of the include files necessary to compile Dynace applications.
You may need to add this directory to the path your compiler uses to search
include files.

\DYNACE\BIN
Executable files necessary for development with the Dynace system. This di-
rectory should be added to your normal search path for executable programs.

\DYNACE\EXAMPLES
Example programs used to learn & demonstrate the Dynace object oriented
extension to C.

c© 1995-1996 Blake McBride

Chapter 1: Introduction 5

\DYNACE\WINEXAM
Example programs used to learn & demonstrate WDS.

\DYNACE\DOCS
Misc. documentation files.

\DYNACE\MANUAL
The Dynace and WDS manuals.

\DYNACE\KERNAL
Complete source to the Dynace kernel.

\DYNACE\CLASS
Source to all of the Dynace base classes.

\DYNACE\THREADS
Complete source to the multi-threader, pipes and semaphores.

\DYNACE\GENERICS
Files necessary to build the system generics files from scratch.

\DYNACE\DPP
Complete source to the dpp utility.

\DYNACE\WINDOWS
Complete source to the Dynace WDS library.

\DYNACE\UTILS
Complete source to the utility programs.

The only files that are absolutely necessary for a developer are those lo-
cated in the \DYNACE\LIB, \DYNACE\INCLUDE and \DYNACE\BIN directories and
\DYNACE\UTILS\STARTUP.MK.

1.8 Learning The System

This manual contains a description of the WDS concepts, a detailed description of the WDS
system and complete reference to all WDS classes. It is designed for a programmer who is
proficient in the C language, but has little or no knowledge of Windows programming or
Dynace.

In addition to this manual, the accompanying example programs will be needed in order
to learn how to use the system. The example programs included with WDS provide a
step-by-step tutorial to getting started.

A proficient C programmer with a pre-existing compiler environment should be able to
install this package and feel comfortable enough with the system to write a simple Windows
application in one day.

The best approach to learning WDS would be to start by reading chapters 1 (Introduc-
tion) and 2 (Concepts). Then refer to chapter 3 (Mechanics) while working through the
WDS example programs.

c© 1995-1996 Blake McBride

6 Dynace Windows Development System Manual

If you wish to dive right in and get a feel for the system you may perform the setup
procedure described in chapter 3 and then go directly to the example programs.

While working through the examples you may refer to the index (located in the back of
the manual) to locate information on all WDS functions.

Although it is not necessary, you may also learn and incorporate the many powerful
object oriented features of the Dynace object oriented extension to C, which is what this
library is based on. Dynace is fully documented in a separate manual.

1.9 Examples & Tutorial

The WDS system includes a series of examples which serve both as a Quick Start and a
Tutorial. Theses examples are located under the \DYNACE\WINEXAM directory. The examples
located under the \DYNACE\EXAMPLES directory are strictly for the Dynace object oriented
extension to C and are not needed to use WDS.

Each example is contained in its entirety in an independent directory. This is done in
order to illustrate the exact files and steps necessary to create a single application.

The example programs are contained in sub-directories under the WINEXAM directory
and are named EXAMnn (where the nn is a two digit number). These numbers are signif-
icant in that they describe the correct order that the examples should be followed. Each
example depends on knowledge built up in previous examples and is not repeated.

Each example contains a readme file which describes information relating to the purpose
of the example and build instructions. These files should be read first. Each example also
includes makefiles which are associated with the compiler vendor being used. Full source is
included.

Each example program contains source (.c) files. There is also a mirror of each source
file with a .txt file extension. These text files contain duplicates of the source file with
extensive documentation in the form of comments. These files should be viewed in order to
understand the code in the application.

Complete setup and build instructions are contained in Chapter 3.

The example programs are tutorial in nature and should be considered the main source
of information used to get started. The manual augments the examples with introductory
material, concepts and a complete reference.

The following is a list of the enclosed examples:

01 Illustrates the steps necessary to compile and link a bare bones Windows ap-
plication.

02 Illustrates the use of menus and message boxes.

03 Illustrates the minimum steps necessary for the creation of a modal dialog.

04 Illustrates the addition of text controls to a dialog.

05 Illustrates the addition of numeric and date controls to a dialog.

c© 1995-1996 Blake McBride

Chapter 1: Introduction 7

06 Illustrates the addition of push button controls to a dialog.

07 Illustrates the addition of radio buttons and check boxes to a dialog.

08 Illustrates the addition of a combo box and list box to a dialog.

09 Illustrates the addition of a scroll bar to a dialog.

10 Illustrates a modal dialog with all control types initialized and used.

11 Illustrates the process of printing to the default printer.

12 Illustrates the process of printing to a user selected and configured printer.

13 Illustrates various methods of outputting text to the printer and changing pages.

14 Illustrates printer output utilizing different fonts.

15 Illustrates printer graphics output, output scaling, brushes and pens.

16 Illustrates the use of modeless dialogs.

17 Illustrates the use of a modeless dialog which isn’t associated with a parent
window.

18 Illustrates the use of the context sensitive help system.

19 Illustrates the creation of Dynace classes in conjunction with a WDS applica-
tion.

See the file \DYNACE\WINEXAM\LIST for the most up-to-date list of example programs.

1.10 Manual Organization

This manual serves as both a user manual and a complete reference manual to the WDS
system. The Dynace object oriented extension to C is documented in a separate manual.

Chapter 1 (Introduction) covers background material needed to orient a new user.

Chapter 2 (Concepts) covers fundamental concepts associated with the Windows envi-
ronment. It does this without introducing very much syntax or other mechanics.

Chapter 3 (Mechanics) documents the exact procedures necessary to setup and use the
WDS system. The example programs should be viewed subsequent to setting the system
up.

Chapter 4 (Class Reference) provides a detailed reference to all classes and methods
associated with the class library included with the WDS system.

The index (located in the back) provides a complete alphabetical listing of all classes,
methods, and macros described in chapter 4.

1.11 Support, Contact & Upgrades

We will respond to all questions or comments submitted by registered users (see
REGISTER.DOC). We will also notify all registered users of bug fixes and enhancements via
e–mail.

c© 1995-1996 Blake McBride

8 Dynace Windows Development System Manual

In addition, it is our hope to hold a public forum concerning Dynace on the inter-
net news group comp.lang.misc. If traffic becomes significant we’d also like to create a
comp.lang.dynace news group.

Internet blake@mcbride.name

1.12 Use, Copyrights & Trademarks

Copyright c© 1996 Blake McBride All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

1.13 Credits

The Dynace Object Oriented Extension to C, Windows Development System and their
associated documentation were written by Blake McBride (blake@mcbride.name).

c© 1995-1996 Blake McBride

9

2 Concepts

The Windows environment has its own lexicon and way of doing things. This chapter
is designed to explain that lexicon and give the programmer a certain comfort level with
respect to elements of Windows programming.

2.1 Windows

Windows are the rectangular region on your screen where a user interacts with the appli-
cation. There are many things which may be done with a window. Typically, a user may
move, resize or change a window into an icon. Actually, dialogs and controls (discussed
further down) are actually little windows located inside bigger windows. Therefore, it is
also possible for a user to interact in a very of ways with a specific window.

There are many attributes which may be associated with a window. Each window may
have a system menu associated with it, a title bar, a minimize/maximize buttons, various
colors, sizes, positions, and border types.

There are three main window types: main, child and popup.

2.1.1 Main Window

There is normally exactly one main window associated with any given application. This
is the first window which comes up when an application starts up, the one which acts as
the fulcrum for all the facilities of the application, and the one which contains the main
menu associated with the application. This is also the window which has the application
icon associated with it. This is so when the application is iconized the appropriate icon will
displayed.

2.1.2 Child Window

In addition to the main window, there are child windows. A child window is a rectangular
region or window which is directly associated with some other (parent) window. Child
windows are always restricted to being located inside its parent window. It can’t be moved
outside its parent. Also, when a parent window gets iconized (minimized into an icon), its
child windows follow suit. When a parent window gets moved across the screen, the child
windows will follow such that their relative position in their parent remains constant. When
a child window is created it is positioned relative to its parent.

2.1.3 Popup Window

In addition to child windows, the system also supports popup windows. A popup window
is a rectangular region which acts, to a greater or lesser extent, independently of any other
window. A popup window may exist outside of any other window and be moved or resized
independent of any other window. Popup windows may or may not have a parent. If a
parent window is associated with a popup and the parent gets iconized, the popup will
follow suit. If no parent is associated with a popup it can be iconized independent of any
other window. Since popup windows are independent of other windows, they are created
with positions which are relative to the entire screen.

c© 1995-1996 Blake McBride

10 Dynace Windows Development System Manual

2.2 Menus

Menus are the words or labels which typically appear at the top of the main window
associated with an application. The user is able to select various application functions by
selecting the appropriate menu option. Each menu option may also present the user with
additional menu options down to a number of levels.

2.3 Dialogs

Once a user selects a particular application function through the application menu, an ap-
plications principal method of providing the user with information, or obtaining information
from, is through dialogs. A dialog is a rectangular region (or more precisely, a window)
which contains various display information and input fields (controls).

There are two fundamental dialog types: model and modeless.

2.3.1 Modal Dialogs

A modal dialog is one which must be completed or canceled prior to accessing any other
part of a given application. If the user is presented with a modal dialog and attempts to
activate another window within the same application, the system will just beep. This dialog
type, however, does not restrict the user from accessing other applications.

Modal dialogs are used most often because the complexity of an application would grow
tremendously if the user were allowed to be in multiple parts of the same application at the
same time.

2.3.2 Modeless Dialogs

Modeless dialogs allow the user to switch from one part of a particular application to another
without completing or canceling the modeless dialog. The user may switch to another part
of an application, obtain additional information, and then return to any portion of the
modeless dialog to complete it. The user may even iconize the dialog for another time.

Modeless dialogs are more complex and less frequently used than modal dialogs.

2.4 Controls

Controls are the primary method of obtaining information from the user. They are the
input fields, push buttons, selection boxes, scroll bars, etc. Although Windows supports a
group of standard controls, there is an endless number of possible types of controls. WDS
supports all standard Windows controls in addition to providing several additional ones and
enhancements to the standard ones.

2.4.1 Text Control

Text controls are used to obtain textual information in the form of character strings. WDS
provides a variety of enhancements to the standard Windows text controls.

2.4.2 Numeric Control

Numeric controls are a WDS supplied control used to obtain numeric data from the user.

c© 1995-1996 Blake McBride

Chapter 2: Concepts 11

2.4.3 Date Control

Date controls are a WDS supplied control used to obtain date information from the user.

2.4.4 Push Button

Push buttons are Windows supplied, WDS enhanced, controls which allow the user to evoke
an immediate action function. For example, the common “OK” and “CANCEL” buttons
are push buttons. The user clicks on the button and some action gets evoked.

2.4.5 Check Box

Check boxes are Windows supplied, WDS enhanced, controls which allow the user to select
among non-exclusive yes/no, on/off type options.

2.4.6 Radio Button

Radio buttons are Windows supplied, WDS enhanced, controls which allow the user to
select one option among a group of mutually exclusive options.

2.4.7 List Box

List boxes allow the user to select items from a list of options. The list may be fully
displayed, scrollable or drop down in nature.

2.4.8 Combo Box

Combo boxes are a combination of the text control and the list box. With combo boxes, a
user my select among a list of options or type in a new item.

2.4.9 Scroll Bar

Scroll bars allow the user to visually select a position within some application specific range
via the mouse.

2.5 Help System

Windows provides a powerful help system which enables the user to obtain interactive
application specific help information via a “Help” menu option or within a specific context
via the “F1” key. WDS supports and makes it easy to use all capabilities of the Windows
help system.

2.6 Cursors

Cursors are the visual elements which indicate where a users input focus is or where he
wishes it to be. Cursors can also be used to indicate something about the input mode
or system status (for example the hour glass is used to indicate that the system is busy).
Common cursors are the underscore, the arrow, the ibeam, and the hour glass.

2.6.1 System Cursors

System cursors are common cursors which are predefined by the system. These include
most of the cursors most applications would need (such as the underscore, the arrow, the
ibeam, and the hour glass) and are easy to select and use.

c© 1995-1996 Blake McBride

12 Dynace Windows Development System Manual

2.6.2 External Cursors

External cursors are cursors which are application specific and created by the programmer.
These cursors may look like virtually anything.

2.7 Icons

Icons are those little picture boxes which are left when an application is minimized. It is
normally something the user can identify the application with in order to reactive it.

2.7.1 System Icons

System icons are those generic icons which are predefined by Windows. These system
defined icons are easy to select and use, but are of a bit less value since they have little to
do with any specific application.

2.7.2 External Icons

External icons are application specific and programmer created icons. They must be de-
signed by the programmer prior to use, but are very flexible, easy to design, and help the
user identify the application.

2.8 Fonts

Fonts are the types (such as Helvetica or times) and size (i.e. 10pt) of the characters which
appear within an application. There are literally thousands to choose from. Fortunately,
however, the system defaults are often sufficient.

2.8.1 System Fonts

The system fonts are those fonts which the user has configured his system to use on a global
basis. Use of these fonts makes an application have a familiar look and feel when compared
to the rest of the apps on the users machine.

2.8.2 External Fonts

External fonts are programmer selectable fonts and may be any of the many fonts available
to the Windows system.

2.9 Brushes

Brushes specify the color and pattern which appears in a window background, in text and
graphics.

2.9.1 System Brushes

System brushes are those colors which were selected by the user as global to their Windows
environment. The programmer may select, for example, the color the user chose for back-
ground windows. The new brush will then have colors the same colors that the user is used
to seeing in other applications on their system. System brushes are used most often.

c© 1995-1996 Blake McBride

Chapter 2: Concepts 13

2.9.2 Stock Brushes

Stock brushes allow the programmer to select from a number of common, Windows defined,
brushes.

2.9.3 Solid Brushes

Solid brushes are arbitrary color solid brushes which may be selected by the programmer.

2.9.4 Hatch Brushes

Hatch brushes enable the programmer to select from any color and any of a number of
Windows defined hatch patterns.

2.10 Pens

Pens are used, principally in graphics, for drawing lines or providing the outline of a figure.
The attributes associated with a pen includes color of the line, width of the line, and its
style. Common styles include solid, dashed, doted, etc.

2.10.1 Stock Pens

Stock pens allows a programmer to select among a few, common, Windows defined pens.

2.10.2 Custom Pens

Using a custom pen allows the programmer to specify the exact attributes associated with
a particular pen.

2.11 Common Dialogs

Windows provides a few common dialogs in order to obtain frequently needed information
in a uniform format. Use of these dialogs when appropriate eases the programming normally
associated with dialog creation and provides the user with a familiar interface.

2.11.1 Color Dialog

The color dialog provides a convenient method of requesting detailed color selection infor-
mation from the user.

2.11.2 Font Dialog

The font dialog provides a convenient method of requesting detailed font selection informa-
tion from the user.

2.11.3 File Dialog

The file dialog provides a convenient method of allowing the user to view and select files.

2.11.4 Print Dialog

The print dialog provides a convenient method of selecting and configuring the printer.

c© 1995-1996 Blake McBride

14 Dynace Windows Development System Manual

2.12 Printing

WDS provides many convenient and easy to use methods of selecting and configuring print-
ers as well creating reports with a variety of fonts and graphics.

2.13 Resources

Windows programs may use application specific icons, dialogs, menus and cursors. These
items are referred to as resources. Each resource has a name and may be accessed by
the application program. Resources are created with a graphically oriented tool called a
resource editor.

Once the needed resources are created, the resource editor saves them to a file called the
resource file. The contents of the resource file are then compiled into a binary form using a
resource compiler. Finally, the compiled resource file is combined with the executable file
at link time.

Resource editors and compilers are included and documented along with your C compiler
package. The resource editor associated with Microsoft’s Visual C++ is called App Studio.
WATCOM calls theirs the WATCOM Resource Editor and Borland calls theirs Resource
Workshop.

2.14 Dynamic Link Libraries (DLL)

Normally, when a program is linked, all of the library code which is accessed gets copied
to the executable being created. Therefore, when the program is run, all the necessary
routines are readily available in the executable file. This is called static linking.

When using DLLs, at link time the linker copies very small stub functions instead of the
real routines into the executable file. These stub functions, when called by the application
code, automatically access the real routines at run time which exist in external DLL files.
This is called dynamic linking because it happens dynamically at run time.

The actual code which uses statically or dynamically linked routines is exactly the same.
In other words, the process of writing code doesn’t change. The only difference is the link
commands used and the fact that dynamic linking requires that the DLLs be available at
run time.

There are three advantages to using DLLs. The first is that if you have several apps
which use the same library routines, you can save disk space by only requiring one copy of
the routines on disk (in the DLL instead of a copy in each executable file).

The second is that since Windows knows that both apps are sharing the exact same code
(because they use the same DLL), if the user activates both apps, Windows only needs to
load one copy of the routines in memory and share the same code for both apps. This saves
memory space.

The third advantage of using DLLs is that if you have several apps which use the same
routine, and a bug is discovered in that routine, only the DLL needs to be updated. None
of the apps will have to be re-linked. The next time any of the apps are run, it will load
the new, and repaired, routine.

c© 1995-1996 Blake McBride

Chapter 2: Concepts 15

There are also a couple of drawbacks associated with the use of DLLs. First, instead
of just using an executable file (as is the case with statically linked executables) you must
make sure to install the appropriate DLLs. This complicates the installation process.

The second, and more troublesome, problem associated with DLLs has to do with ver-
sions. Lets say you have some app which uses some common DLL. Everything is compiled
and linked and runs well. Several months go by and you start working on a new project.
While developing the new app you decide to use some routine in your common DLL which
used by the first app. While using the routine located in the DLL you discover a bug or
anomaly in the routine, you therefore decide to correct it. Now the second app works fine.
A month later you try to use the first app again and it now has all sorts of bugs! How could
this happen? It always worked before and you haven’t changed it.

What happened is that the first app depended on a particular anomaly associated with
the original version of the routine located in the DLL. When the anomaly was corrected, it
mysteriously broke the first app. This scenario is more common and troublesome than it
may appear!

2.15 Win16, Win32, Win32s

Microsoft has two independent but similar models in which an application may run. Each
model has an associated application program interface (API) or library which it links with
and uses in order to interface with the OS. The two APIs are called Win16 and Win32.

Win16 is a 16 bit interface designed to run on Windows 3.1. All common Windows 3.1
apps are created using this API. This API has the advantage of being portable to the most
environments. Although it will only support 16 bit applications, these apps will run on
Windows 3.1, Windows ’95 and Windows NT.

Win32 on the other hand is a full featured 32 bit API. The syntax of this API is very
similar but not exactly the same as Win16. The main differences have to do with the fact
that in a 32 bit environment int’s are 32 bits instead of 16. Win32 and Win16 are similar
enough, however, that with a little planning, it is not difficult to create apps which are
compile time portable between Win16 and Win32. Windows NT is the primary host for
Win32 applications, however, these 32 bit applications may run on 16 bit Windows 3.1 as
follows.

In order to bridge the gulf between Win16 and Win32 and allow 32 bit applications
to run under Windows 3.1, Microsoft created Win32s. Win32s is a large subset of Win32
which supports the same syntax as Win32, supports 32 bit apps, and will run on Windows
3.1 and NT. In order to run on 16 bit Windows 3.1 it is necessary to install some 32 bit
extensions to Windows 3.1. These extensions come with the C compiler packages and are
freely redistributable. Win32s apps will run in true 32 bit mode under Windows 3.1 or
Windows NT using the same executable.

It is important to note that there is no difference between creating a Win32 or Win32s
application. Both use the same compiler, compiler flags, linker, linker flags and libraries.
The exact same executable is built. There is no way to specifically tell the system which

c© 1995-1996 Blake McBride

16 Dynace Windows Development System Manual

type of application you wish. The only difference between the two is which specific APIs
your application calls.

If your application only calls those APIs which are common to Win32 and Win32s then
your application will run as a Win32 application under NT and a Win32s under Windows
3.1. However, if your application makes any API calls which are specific to Win32 then
those calls will not work under Windows 3.1.

WDS supports Win16 and Win32. In addition, WDS only uses those APIs which are
available under Win32s, therefore, WDS applications will run fine under Win32s.

2.16 Message Passing Architecture

Most character based applications are pretty simple in the sense that they (in one form or
another) basically get a key, perform some processing, get the next key, perform some more
processing, etc. In a graphical environment (such as Windows) this model doesn’t work. At
any point (like in the middle of entering data in a field) the user may decide to move or resize
a window and the application has to be able to handle a myriad of possible input requests
(messages) at any point. In order to accommodate this fact, Windows programming uses a
different programming model called Message Driven Architecture (MDA).

MDA is tremendously more complex and requires much more code to handle than the
old get-key model. The main benefit of the Dynace Windows Development System is that
WDS encapsulates and hides most of the aspects of MDA. With WDS you can code in a
simple, familiar way and produce full featured Windows applications.

c© 1995-1996 Blake McBride

17

3 Mechanics

This chapter, in concert with the WDS examples, describes the tools and actual steps
necessary to create WDS application programs. The best method of learning is to go
through the example programs located under the \DYNACE\WINEXAM directory in the order
in which they appear.

3.1 Build Modes

There are two principal modes of building WDS applications. You can either use the
Integrated Development Environment (IDE) which comes with your compiler or you can
use the included DMAKE command line make utility along with the other command line
facilities of your compiler.

Use of the IDE is recommended since it provides a convenient environment for editing,
building, debugging and executing your application. However, the DMAKE method is
required both for building the WDS libraries from scratch (if you have the source edition)
or to build WDS applications which contain new Dynace classes. This is required because
the build procedure necessary for Dynace classes is too complex for the IDEs.

Note, however, that creating new Dynace classes is not required in order to build full
featured WDS applications.

In addition, only the DMAKE mode is supported when initially building the Dynace
and WDS systems from scratch.

3.2 IDE Build Setup

Prior to building any of the examples using the IDE, a few configuration options within the
IDE need to be set.

3.2.1 Microsoft IDE

Configure the correct directories for include files and libraries. This can be done via the
tools / options / directories menu item.

Configure the IDE such that it will look under the \DYNACE\INCLUDE directory (in ad-
dition to whatever is already set) for include files.

Additionally, configure the IDE such that it will look under the \DYNACE\LIB directory
(in addition to whatever is already set) for library files.

3.2.2 Borland IDE

Configure the correct directories for include files and libraries. Since the Borland IDE
associates these directories directly with each project, this information will have to be
adjusted separately for each of the two .IDE files which come with Dynace. These files are
under the \DYNACE\WINEXAM\SETUP directory and are called WIN16.IDE and WIN32.IDE.
This can be done via the options / project / directories menu item after loading one of the
IDE files. You must then save the change by using the project / close project menu option.
Repeat this procedure for both IDE files.

c© 1995-1996 Blake McBride

18 Dynace Windows Development System Manual

Configure the IDE such that it will look under the \DYNACE\INCLUDE directory (in ad-
dition to whatever is already set) for include files.

Additionally, configure the IDE such that it will look under the \DYNACE\LIB directory
(in addition to whatever is already set) for library files.

3.2.3 Symantec IDE

Symantec compiler versions 7.2 and prior do not work due to bugs in their compiler. A
patched 7.2 compiler did work but was a little flaky. Version 7.21 seemed to work fine but
was not extensively tested.

3.3 DMAKE Build Setup

This section lists environment variables which must be set if the DMAKE build mode is
used. If the IDE build mode is used see the IDE Build Setup section for setup details.

The \DYANCE\BIN directory should be part of the search path used by your system for
executable programs (the PATH environment variable).

The following environment variables should be set as follows (modify as appropriate):

set MAKESTARTUP=c:\dynace\utils\startup.mk

set TMPDIR=c:\tmp

set DOS4G=quiet

set DOS16M=:4M

The DOS4G and DOS16M environment variables are only necessary when running the 32
bit DOS version of dpp.exe which has been compiled with the WATCOM compiler. Win32
or other versions of dpp do not require these variables.

Although not required by the example programs, Microsoft users may find it convenient
to add \DYNACE\INCLUDE and \DYNACE\LIB to your compiler’s include and library search
paths respectively.

Borland users will need to adjust the BORLAND_HOME path setting in the B16.DM and
B32.DM makefiles located in the \DYNACE\WINEXAM\SETUP and Dynace source code direc-
tories. In addition, the Borland resource compiler requires that the INCLUDE environment
variable be set to where the Borland include files are located, for example:

set INCLUDE=d:\bc45\include

3.4 Building Dynace & WDS From Scratch

The procedure used to build Dynace & WDS from scratch is fully described in
\DYNACE\DOCS\BUILD.txt. See that file for build instructions.

New users will want to read all the files in the docs directory.

c© 1995-1996 Blake McBride

Chapter 3: Mechanics 19

3.5 Examples Setup

All examples are buildable under all supported environments and build procedures, includ-
ing IDE or DMAKE builds, as well as 16 bit Windows or 32 bit Win32 (NT, Win32s,
Windows 95). The only difference is the build procedures or associated makefiles.

In order to avoid having all supported build procedures cluttering up the example di-
rectories, the example directories are shipped without any build procedures installed. All
the build procedures are located in the \DYNACE\WINEXAM\SETUP directory along with batch
files used to install the specific build procedures you need.

The following table lists the commands available in order to configure the example pro-
grams. Note that each command must be executed from the \DYNACE\WINEXAM\SETUP

directory unless otherwise indicated. There is no harm in configuring the examples for
more than one configuration at the same time.

M16IDE IDE build with Microsoft Visual C 16 bit

M16DM DMAKE build with Microsoft Visual C 16 bit

M32IDE IDE build with Microsoft Visual C 32 bit

M32DM DMAKE build with Microsoft Visual C 32 bit

B16IDE IDE build with Borland C 16 bit

B16DM DMAKE build with Borland C 16 bit

B32IDE IDE build with Borland C 32 bit

B32DM DMAKE build with Borland C 32 bit

S32IDE IDE build with Symantec C 32 bit

S32DM DMAKE build with Symantec C 32 bit

CLEANALL
Used to delete all files produced by builds in all examples

REALCLN
Used to delete all files produced by builds and all build configuration files (ba-
sically to go back to an as-shipped state)

CLEAN Used to delete all files produced by a build for a single example (execute from
the particular example’s directory)

3.6 Example Files

This section documents the files which are contained in each example program.

README This file describes the object of the example. It should be read first.

MAIN.C This file is the complete source code to the example program.

MAIN.TXT
This is a fully commented version of MAIN.C. It describes all aspects of the
current example which are unique.

c© 1995-1996 Blake McBride

20 Dynace Windows Development System Manual

MAIN.RC This is the resource script describing the resources used by the application. It
is created and edited via the indigenous resource editor.

RESOURCE.H
This is another file created by the resource editor. It is used by the application
code to associate resources defined in MAIN.RC to macro names.

ALGOCORP.ICO
An icon picturing the Algorithms Corporation logo.

MAIN.DEF
Link definition file. Only needed for Windows 3.1 applications.

In addition to the above, the following build/system specific make or project files are
used.

MAIN.MAK
Project file for Microsoft Visual C 16 bit

M16.DM DMAKE makefile for Microsoft Visual C 16 bit

WIN32.MAK
Project file for Microsoft Visual C 32 bit

M32.DM DMAKE makefile for Microsoft Visual C 32 bit

WIN16.IDE
Project file for Borland C 16 bit

B16.DM DMAKE makefile for Borland C 16 bit

WIN32.IDE
Project file for Borland C 32 bit

B32.DM DMAKE makefile for Borland C 32 bit

S32.PRJ & S32.OPN
Project files for Symantec C 32 bit (requires version 7.21 or later)

S32.DM DMAKE makefile for Symantec C 32 bit (requires version 7.21 or later)

Once an application is built, the only file needed to run it is MAIN.EXE.

3.7 Building The Examples

In order to build an example with an IDE, simply open the appropriate project file and
select build.

In order to build with the DMAKE command line utility execute the following command.

dmake -f MAKEFILE.DM

where MAKEFILE.DM is one of the DMAKE makefiles listed above.

Alternatively, you can use the following command to create a debug version of the
example:

dmake -f MAKEFILE.DM DEBUG=1

c© 1995-1996 Blake McBride

Chapter 3: Mechanics 21

3.8 Debugging With The IDE

Due to the fact that the WDS is the first thing which Windows sees when it executes an
application and the fact that WDS is not shipped with debugging information, the following
procedure will make it easier to debug your application code.

First compile your application with debugging information. Then when you wish to
debug the application, set a break point at “start”. You can then debug your application
by telling the debugger to run to the first break point. You will then see the initial function
of your application and may debug as usual from that point.

If, however, you purchased the WDS source code, you may compile it with full debugging
information and debug through the WDS code as well as your application specific code.

3.9 Building Your Own Application

The best method of building your own application would be to start with one of the example
programs and proceed from there. This way all the compiler, linker and other options will
be preset.

If you plan to create your own Dynace classes along with your WDS application, it would
be best for you to start with the WDS example which illustrates the creation of a Dynace
class along with the WDS application. This example has the appropriate make file logic to
handle custom classes along with a WDS application.

3.10 DMAKE

DMAKE is a very powerful, portable and enhanced make utility developed by Dennis
Vadura. It is freely distributable and not owned by Algorithms Corporation or Blake
McBride. Complete documentation for this utility is contained in \DYNACE\DOCS\DMAKE.MAN

3.11 DPP

DPP is the pre-processor used by Dynace to convert class definition files into C source files.
It is also used to generate generic files and perform generic/method argument checking.
This utility is only needed when creating new classes and is only used by more advanced
WDS users who wish to create their own Dynace classes.

This utility is fully documented in the Dynace language manual.

c© 1995-1996 Blake McBride

23

4 Library Reference

This chapter gives a detailed description of each WDS class. It is organized by facility so
that in order to look something up, you would first go to the section which deals with the
facility you are interested in. And then the functions are in alphabetical order.

There is a naming convention used with Dynace generics. All generics start with either a
lower case “g”, “v” or “m”, and are always followed by an upper case letter. The ones which
start with “g” are normal generics and may be treated like normal C functions. The ones
which begin with “v” use the variable argument facilities of C and you should, therefore,
take a bit extra care when using them since there is no compile time argument checking
being done with these functions.

Since all generics start with either “g”, “v” or “m” and in order to avoid the difficulty
associated with grouping all the generics under three letters, the first letter is dropped for
indexing or heading purposes. Therefore if you are looking up a generic, it will always
appear in the index or header with its first letter missing. The syntax description and
example code, however, will show the entire name.

There is one thing about Dynace which you must be aware of, however. Dynace generic
functions (which is what most of these functions are) allow the same function to be called
in many circumstances. These generic functions dynamically dispatch to the appropriate
procedures based on the type of the first argument to the generic function (or “generic”
for short). So even though you are calling the same function name, entirely different func-
tionality may occur based on the type of the first argument. This fact is seldom, if ever, a
problem since you know whether you are dealing with an icon or a dialog, for example, at
any given point. Just be sure to look up the generic in the appropriate section.

4.1 A Note To Dynace Language Users

In an effort to hide unnecessary details associated with class vs. instance methods from
WDS users who don’t care about the differences, these differences are not discussed or
grouped as they are in the Dynace manual. You can always distinguish between the two by
what the method takes as its first argument. If it’s a class, then you have a class method,
otherwise it’s an instance method.

If you are a WDS user with interest in the Dynace object oriented extension to C, it is
fully documented in its associated manual.

4.2 Class Hierarchy

This Dynace Windows Development System contains the following class hierarchy:

c© 1995-1996 Blake McBride

24 Dynace Windows Development System Manual

Dynace Windows Development System Class Hierarchy

(Object)

Application

(Stream)
Window

MainWindow
PopupWindow

DisplayWindow
StatusWindow
SplashWindow

ChildWindow
ToolBar
StatusBar

ButtonWindow
Control

SpinControl
TextControl
NumericControl
DateControl

PushButton
CheckBox
RadioButton
ListBox

DirListBox
ComboBox
ScrollBar
StaticControl
CustomControl

Printer

Menu
ExternalMenu
InternalMenu

PopupMenu

Dialog
ModalDialog
ModelessDialog

HelpSystem

Cursor
SystemCursor
ExternalCursor

TaskList

Task
DialogTask

Icon
SystemIcon
ExternalIcon

Font
SystemFont
ExternalFont

Brush
StockBrush
SolidBrush

SystemBrush
HatchBrush

Pen
StockPen
CustomPen

CommonDialog
FileDialog
PrintDialog
ColorDialog
FontDialog

DynamicLibrary

Database (ODBC)
Statement
StatementInfo
TableInfo
ColumnInfo
TableListbox
VirtualListbox

ComClient (COM/DCOM/OLE)
ComInstance
ComInterface
ComServer
OLEDispatch

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 25

4.3 Application

The Application class is the class used to control application wide defaults such as fonts,
cursors, brushes and so on. It is also the class which gets executed by Windows first and
executes your application specific start function.

There are no instance methods associated with the Application class. All access to this
class is through class methods via the global class object Application.

[CmdLine]CmdLine::Application

cl = gCmdLine(Application);

char *cl; /* command line */

This method is used to gain access to command line which was used when the appli-
cation was launched.

Example:

int cl;

cl = gCmdLine(Application);

See also: Instance, Show, PrevInstance

[Error]Error::Application

gError(obj, msg);

object obj; /* any object */

char *msg; /* error message */

This method is used in a severe error condition to issue an error message to the user
and terminate the application. This method should be avoided if possible.

Note that this method is actually associated with the Dynace Object class which is
why the first argument may be any Dynace object.

Example:

gError(Application, "Error message");

See also: QuitApplication

c© 1995-1996 Blake McBride

26 Dynace Windows Development System Manual

[GetBackBrush]GetBackBrush::Application

bo = gGetBackBrush(Application);

object bo; /* brush object */

This method is used to obtain a copy of the default background brush object asso-
ciated with the application. The returned object will be an instance of one of the
subclasses of the Brush class.

The object returned must, either explicitly or implicitly, be disposed when it is no
longer needed. This is normally done automatically by WDS when it is associated
with a window.

See the Brush class and its subclasses for further details.

Example:

object bo;

bo = gGetBackBrush(Application);

See also: GetTextBrush, SetBackBrush

[GetCursor]GetCursor::Application

co = gGetCursor(Application);

object co; /* cursor object */

This method is used to obtain a copy of the default cursor object associated with the
application. The returned object will be an instance of one of the subclasses of the
Cursor class.

The object returned must, either explicitly or implicitly, be disposed when it is no
longer needed. This is normally done automatically by WDS when it is associated
with a window.

See the Cursor class and its subclasses for further details.

Example:

object co;

co = gGetCursor(Application);

See also: SetCursor

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 27

[GetFont]GetFont::Application

fo = gGetFont(Application);

object fo; /* font object */

This method is used to obtain a copy of the default font object associated with the
application. The returned object will be an instance of one of the subclasses of the
Font class.

The object returned must, either explicitly or implicitly, be disposed when it is no
longer needed. This is normally done automatically by WDS when it is associated
with a window.

See the Font class and its subclasses for further details.

Example:

object fo;

fo = gGetFont(Application);

See also: SetFont

[GetIcon]GetIcon::Application

io = gGetIcon(Application);

object io; /* icon object */

This method is used to obtain a copy of the default icon object associated with the
application. The returned object will be an instance of one of the subclasses of the
Icon class.

The object returned must, either explicitly or implicitly, be disposed when it is no
longer needed. This is normally done automatically by WDS when it is associated
with a window.

See the Icon class and its subclasses for further details.

Example:

object io;

io = gGetIcon(Application);

See also: SetIcon

c© 1995-1996 Blake McBride

28 Dynace Windows Development System Manual

[GetName]GetName::Application

nm = gGetName(Application);

char *nm; /* application name */

This method is used to obtain the global name associated with the application.

Example:

char *nm;

nm = gGetName(Application);

See also: SetName

[GetTextBrush]GetTextBrush::Application

bo = gGetTextBrush(Application);

object bo; /* brush object */

This method is used to obtain a copy of the default text brush object associated with
the application. The returned object will be an instance of one of the subclasses of
the Brush class.

The object returned must, either explicitly or implicitly, be disposed when it is no
longer needed. This is normally done automatically by WDS when it is associated
with a window.

See the Brush class and its subclasses for further details.

Example:

object bo;

bo = gGetTextBrush(Application);

See also: GetBackBrush, SetTextBrush

[GetScalingMode]GetScalingMode::Application

m = gGetScalingMode(Application);

int m; /* scaling mode */

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 29

This method is used to get the current scaling mode in affect. See SetScalingMode

for further details.

Example:

int mode;

mode = gGetScalingMode(Application);

See also: SetScalingMode, ScaleToPixels, ScaleToCurrentMode

[GetSize]GetSize::Application

r = gGetSize(Application, vert, horz);

int *vert; /* vertical size */

int *horz; /* horizontal size */

object r; /* Application */

This method is used to get the total size of the user’s screen. vert and horz are in
increments dictated by the mode selected by SetScalingMode.

Example:

int y, x;

gGetSize(Application, &y, &x);

See also: SetScalingMode, GetSize::Window

[Instance]Instance::Application

ins = gInstance(Application);

HINSTANCE ins; /* instance handle */

This method is used to gain access to the Windows instance handle associated with
the application. This handle is mainly used internally by Windows and WDS, and
should not normally be needed by a WDS programmer.

Example:

HINSTANCE h;

h = gInstance(Application);

c© 1995-1996 Blake McBride

30 Dynace Windows Development System Manual

See also: PrevInstance, CmdLine, Show

[PrevInstance]PrevInstance::Application

ins = gPrevInstance(Application);

HINSTANCE ins; /* instance handle */

This method is used to gain access to the Windows instance handle associated with
the previous instance of this application, should more than one be running. This
handle is mainly used internally by Windows and WDS, and should not normally be
needed by a WDS programmer.

This value will always be NULL under Windows NT.

Example:

HINSTANCE h;

h = gPrevInstance(Application);

See also: Instance, CmdLine, Show

[QuitApplication]QuitApplication::Application

r = gQuitApplication(Application, ret);

int ret; /* app return value */

object r; /* Application */

This method is used to terminate an application. The value passed will be used as
the return value of the application.

Example:

gQuitApplication(Application, 0);

See also: Error

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 31

[ScaleToCurrentMode]ScaleToCurrentMode::Application

r = gScaleToCurrentMode(Application, y, x, fnt);

int *y; /* row position */

int *x; /* column position */

object fnt; /* current font object */

object r; /* Application */

This method is used to convert coordinates from pixels to the current scaling mode.
It is mainly used internally by WDS in order to convert Window’s standard pixel
positions into the current scaling mode.

On entry x and y point to values which are coordinates in terms of pixels. After this
method returns, their value will be changed to be in terms of the current scaling mode
(see SetScalingMode).

fnt is a font object which is used only if the current scaling mode is relative to a font.
If so, the font it will be related to will be the one passed.

Example:

int y, x;

object fnt;

y = some position;

x = some position;

fnt = some font object;

gScaleToCurrentMode(Application, &y, &x, fnt);

See also: SetScalingMode, GetScalingMode, ScaleToPixels

[ScaleToPixels]ScaleToPixels::Application

r = gScaleToPixels(Application, y, x, fnt);

int *y; /* row position */

int *x; /* column position */

object fnt; /* current font object */

object r; /* Application */

This method is used to convert coordinates from the current scaling mode to pixels. It
is mainly used internally by WDS in order to convert your coordinates into standard
pixel positions.

c© 1995-1996 Blake McBride

32 Dynace Windows Development System Manual

On entry x and y point to values which are coordinates in terms of the current scaling
mode (see SetScalingMode). After this method returns, their value will be changed
to be in terms of pixels.

fnt is a font object which is used only if the current scaling mode is relative to a font.
If so, the font it will be related to will be the one passed.

Example:

int y, x;

object fnt;

y = some position;

x = some position;

fnt = some font object;

gScaleToPixels(Application, &y, &x, fnt);

See also: SetScalingMode, GetScalingMode, ScaleToCurrentMode

[SetBackBrush]SetBackBrush::Application

r = gSetBackBrush(Application, bo);

object bo; /* brush object */

object r; /* brush object passed */

This method is used to set the application wide default background brush. This is the
brush used to color everything except the text that appears on windows and dialogs.
bo must be an instance of one of the subclasses of Brush. All windows and dialogs
will use the application wide default brush which is in effect when they are created
unless a specific brush object is specified for a particular window.

When a new default brush object is set, any previous default object will be disposed.
If no default is set, WDS uses the system brush identified as COLOR_WINDOW.

See the Brush class and its subclasses for further details.

Example:

gSetBackBrush(Application, vNew(SystemBrush, COLOR_WINDOW));

See also: GetBackBrush, SetTextBrush

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 33

[SetCursor]SetCursor::Application

r = gSetCursor(Application, co);

object co; /* cursor object */

object r; /* cursor object passed */

This method is used to set the application wide default cursor. co must be an instance
of one of the subclasses of Cursor. All windows will use the application wide default
cursor which is in effect when they are created unless a specific cursor object is
specified for a particular window.

When a new default cursor object is set, any previous default object will be disposed.
If no default is set, WDS uses the system cursor identified as IDC_ARROW.

See the Cursor class and its subclasses for further details.

Example:

gSetCursor(Application, gLoadSys(SystemCursor, IDC_ARROW));

See also: GetCursor, LoadSys::SystemCursor, Load::ExternalCursor

[SetFont]SetFont::Application

r = gSetFont(Application, fo);

object fo; /* font object */

object r; /* font object passed */

This method is used to set the application wide default font. fo must be an instance
of one of the subclasses of Font. All windows will use the application wide default
font which is in effect when they are created unless a specific font object is specified
for a particular window.

When a new default font object is set, any previous default object will be disposed.
If no default is set, WDS uses the system font identified as SYSTEM_FONT.

See the Font class and its subclasses for further details.

Example:

gSetFont(Application, vNew(SystemFont, SYSTEM_FONT));

See also: GetFont, Load::SystemFont, New::ExternalFont

c© 1995-1996 Blake McBride

34 Dynace Windows Development System Manual

[SetIcon]SetIcon::Application

r = gSetIcon(Application, io);

object io; /* icon object */

object r; /* icon object passed */

This method is used to set the application wide default icon. An icon associated to
a window is the one which is displayed when the window is iconized. io must be an
instance of one of the subclasses of Icon. All windows will use the application wide
default icon which is in effect when they are created unless a specific icon object is
specified for a particular window.

When a new default icon object is set, any previous default object will be disposed.
If no default is set, WDS uses the system icon identified as IDI_APPLICATION.

See the Icon class and its subclasses for further details.

Example:

gSetIcon(Application, gLoadSys(SystemIcon, IDI_APPLICATION));

See also: GetIcon, LoadSys::SystemIcon, Load::ExternalIcon

[SetName]SetName::Application

gSetName(Application, nm);

char *nm; /* application name */

This method is used to give the application a globally accessible name. This name is
accessible via GetName. There is no other use made of this information.

Example:

gSetName(Application, "My App");

See also: GetName

[SetScalingMode]SetScalingMode::Application

r = gSetScalingMode(Application, m);

int m; /* scaling mode */

int r; /* previous mode */

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 35

This method is used to set the scaling mode used by all other WDS methods which
take coordinate positions. Valid modes are as follows:

SM_1_PER_CHAR

This mode causes each position to be in increments determined by the
size of the current font. For example row 7 would mean 7 times the height
of the current font. Similar to line positions.

SM_10_PER_SYSCHAR

This mode causes each position to be in increments determined by one
tenth the size of the system font declared globally to the user’s Windows
environment. For example row 70 would mean 7 times the height of the
Windows global system font. This allows positioning relative to a scaling
factor determined by the user.

SM_PIXELS

This mode performs no conversion. The application is able to use pixel
coordinated directly.

The default value is SM_1_PER_CHAR.

The value returned is the mode which was previously set.

Example:

gSetScalingMode(Application, SM_PIXELS);

See also: GetScalingMode, ScaleToPixels, ScaleToCurrentMode

[SetTextBrush]SetTextBrush::Application

r = gSetTextBrush(Application, bo);

object bo; /* brush object */

object r; /* brush object passed */

This method is used to set the application wide default text brush. This is the brush
used by all text output (or foreground) to windows or dialogs. bo must be an instance
of one of the subclasses of Brush. All windows and dialogs will use the application
wide default brush which is in effect when they are created unless a specific brush
object is specified for a particular window.

When a new default brush object is set, any previous default object will be disposed.
If no default is set, WDS uses the system brush identified as COLOR_WINDOWTEXT.

See the Brush class and its subclasses for further details.

Example:

gSetTextBrush(Application, vNew(SystemBrush, COLOR_WINDOWTEXT));

c© 1995-1996 Blake McBride

36 Dynace Windows Development System Manual

See also: GetTextBrush, SetBackBrush

[Show]Show::Application

sv = gShow(Application);

int sv; /* show value */

This method is used to gain access to the show value supplied by Windows when
an application starts. It is normally used to determine how an initial application’s
main window should be shown. The available options are Windows macros which
begin with SW_ and are fully documented by the Windows documentation under the
WinMain function.

Example:

int sv;

sv = gShow(Application);

See also: Instance, CmdLine, PrevInstance

4.4 Windows

This section documents the Window class which contains all the functionality which is com-
mon to Main, Child, and Popup windows. See chapter 2 of this manual for a description of
the different window types.

[AddHandlerAfter]AddHandlerAfter::Window

r = gAddHandlerAfter(wind, msg, func);

object wind; /* a window object */

unsigned msg; /* message */

long (*func)(); /* function pointer */

object r; /* the window obj */

This method is used to associate function func with Windows window message msg

for window wind. Whenever window wind receives message msg, func will be called.

wind is the window object who’s messages you wish to process. msg is the particular
message you wish to trap. These messages are fully documented in the Windows
documentation in the Messages section. They normally begin with WM_.

func is the function which gets called whenever the specified message gets received
and takes the following form:

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 37

long func(object wind,

HWND hwnd,

UINT mMsg,

WPARAM wParam,

LPARAM lParam)

{

.

.

.

return 0L; /* or whatever is appropriate */

}

Where wind is the window being sent the message. The remaining arguments and re-
turn value is fully documented in the Windows documentation under the WindowProc
function and the Windows Messages documentation.

WDS keeps a list of functions associated with each message associated with each win-
dow. When a particular message is received the appropriate list of handler functions
gets executed sequentially. AddHandlerAfter appends the new function to the end of
this list, and AddHandlerBefore adds the new function to the beginning of the list.

WDS may also, and optionally, execute the Windows default procedure associated
with a given message either before or after the user added list of functions. This
behavior may be controlled via DefaultProcessingMode.

Windows will only see the return value of the last message handler executed including,
if applicable, the default.

Example:

int hSize, vSize;

static long process_wm_size(object wind,

HWND hwnd,

UINT mMsg,

WPARAM wParam,

LPARAM lParam)

{

hSize = LOWORD(lParam);

vSize = HIWORD(lParam);

return 0L;

}

.

.

gAddHandlerAfter(wind, (unsigned) WM_SIZE, process_wm_size);

.

.

c© 1995-1996 Blake McBride

38 Dynace Windows Development System Manual

See also: DefaultProcessingMode, AddHandlerBefore

[AddHandlerBefore]AddHandlerBefore::Window

r = gAddHandlerBefore(wind, msg, func);

object wind; /* a window object */

unsigned msg; /* message */

long (*func)(); /* function pointer */

object r; /* the window obj */

This function is fully documented under AddHandlerAfter.

See also: AddHandlerAfter

[Associate]Associate::Window

r = mAssociate(wind, itm, fun);

object wind; /* a window object */

int itm; /* menu item */

long (*fun)(); /* function */

object r; /* the menu */

This method is used to associate an application specific function (fun) with a menu
item (itm) associated with the current menu attached to window wind. Once this is
done, if the user selects the menu option identified by itm, then the function fun will
be executed.

itm is a programmer defined macro which identifies one particular choice among those
available within the menu which is currently attached to window wind. This macro
is defined while the programmer defines the entire menu using the resource editor.

fun is the function which will be executed when the user selects menu option itm and
has the following form:

long fun(object wind, unsigned id)

{

.

.

.

return 0L;

}

The function executed (fun) is passed the window object and the specific menu id
which the user selected and returns a long. The return value is documented in the

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 39

Windows documentation under the message named WM_COMMAND. It should normally
be 0L.

Example:

static long file_message(object wind)

{

gMessage(wind, "File_Message");

return 0L;

}

.

.

mLoadMenu(win, IDR_MENU1);

mAssociate(win, ID_FILE_MESSAGE, file_message);

See also: LoadMenu, MenuItemMode

[AutoDispose]AutoDispose::Window

r = gAutoDispose(wind, mode);

object wind; /* a window object */

int mode; /* auto dispose mode */

int r; /* previous value */

This method is used to enable or disable the auto dispose mechanism associated
with a window. This feature, when enabled, causes WDS to automatically dispose
of the WDS object associated with a window whenever the user closes the window
(wind). Normally, when this feature is disabled, if the user closes a window, WDS
removes the window from the display, but the WDS object remains intact until the
program manually disposes of the window object (via Dispose). This feature is most
commonly used with asynchronous, popup windows.

Note that it is invalid to attempt to use a WDS object subsequent to it being disposed,
and each unneeded WDS object must be deleted.

mode is set to 1 to enable the feature and 0 to disable it. The value returned is the
prior mode.

Example:

gAutoDispose(wind, 1);

See also: Dispose

c© 1995-1996 Blake McBride

40 Dynace Windows Development System Manual

[AutoShow]AutoShow::Window

r = gAutoShow(wind, mode);

object wind; /* a window object */

int mode; /* auto show mode */

int r; /* previous value */

This method is used to enable or disable the auto show mechanism associated with a
window. This feature, when enabled, causes WDS to automatically display (execute
Show) on a window which is written to. This enables the programmer to create a
window which will automatically popup the first time the program displays text to
it.

mode is set to 1 to enable the feature and 0 to disable it. The value returned is the
prior mode.

Example:

gAutoShow(wind, 1);

See also: Show

[BackBrush]BackBrush::Window

r = gBackBrush(wind, brsh);

object wind; /* a window object */

object brsh; /* brush object */

object r; /* wind */

This method is used to determine what brush object is used for the background of
window wind and performs the same function as the Use method when used with a
Brush object. Any previously associated brush object will be disposed. This brush
object will also be automatically disposed when the window is disposed.

The window passed is returned.

Example:

object myWind;

gBackBrush(myWind, vNew(SolidBrush, 0, 0, 255));

See also: TextBrush, Use, SetTextBrush::Application and the Brush classes

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 41

[DefaultProcessingMode]DefaultProcessingMode::Window

r = gDefaultProcessingMode(wind, msg, mode);

object wind; /* a window object */

unsigned msg; /* message */

int mode; /* default processing mode */

object r; /* the window obj */

This method is used to determine when or if the Windows default message procedure
is processed for a given message (msg) associated with a particular window (wind).

WDS allows a programmer to specify an arbitrary number of functions to be ex-
ecuted whenever a window receives a specific message (via AddHandlerAfter and
AddHandlerBefore). Windows has default procedures associated with many window
messages. At times it is necessary to replace or augment this default functionality.
DefaultProcessingMode gives the programmer control over when and if this default
Windows functionality. mode is used to specify the desired mode. The following table
indicates the valid modes:

0 Do not execute the Windows default processing

1 Execute default processing after programmer defined handlers

2 Execute default processing before programmer defined handlers

Note that the default mode is always 1, and must be explicitly changed, if desired,
for each message associated with each window.

msg is the particular message you wish to affect. These messages are fully documented
in the Windows documentation in the Messages section. They normally begin with
WM_.

Example:

gDefaultProcessingMode(wind, (unsigned) WM_SIZE, 0);

See also: AddHandlerAfter

[Dispose]Dispose::Window

r = gDispose(wind);

object wind; /* a window object */

object r; /* NULL */

This method is used to remove and dispose of a window object when it is no longer
needed. This method should be called on all windows when they are no longer needed.

c© 1995-1996 Blake McBride

42 Dynace Windows Development System Manual

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object myWind;

myWind = gDispose(myWind);

See also: AutoDispose, New::ChildWindow, New::PopupWindow

[Erase]Erase::Window

r = gErase(wind, brow, erow, bcol, ecol);

object wind; /* a window object */

int brow; /* beginning row */

int erow; /* ending row */

int bcol; /* beginning column */

int ecol; /* ending column */

object r; /* the window object */

This method is used to delete all text vectors which intersect the rectangle defined
by the parameters. These parameters are adjusted according to the current scaling
mode (set with SetScalingMode::Application. All coordinates are measured from
the upper left hand corner of the window and start with 0,0.

The object returned is the window object passed.

Example:

gErase(win, 3, 10, 0, 200);

See also: EraseLines, EraseAll

[EraseAll]EraseAll::Window

r = gEraseAll(wind);

object wind; /* a window object */

object r; /* the window object */

This method is used to erase all text lines associated with a window.

The object returned is the window object passed.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 43

Example:

gEraseAll(win);

See also: EraseLines, Erase

[EraseLines]EraseLines::Window

r = gEraseLines(wind, blin, elin);

object wind; /* a window object */

int blin; /* beginning line */

int elin; /* ending line */

object r; /* the window object */

This method is used to delete all text lines from a starting line number (blin) to an
ending line number (elin). All lines are measured from the upper left hand corner of
the window and start with 0,0. Lines positions are calculated based on the current
font.

The object returned is the window object passed.

Example:

gEraseLines(win, 3, 10);

See also: Erase, EraseAll

[Getch]Getch::Window

ch = gGetch(wind);

object wind; /* a window object */

int ch; /* character read */

This method is used to obtain the next input character struck by the user. The
SetBlock method may be used to determine whether or not Getch waits if a character
is not available. The value returned is the character struck by the user or 0 if no
character was available and the input was non-blocking.

Example:

object myWind;

int ch;

ch = gGetch(myWind);

c© 1995-1996 Blake McBride

44 Dynace Windows Development System Manual

See also: Kbhit, SetBlock, Gets

[GetName]GetName::Window

r = gGetName(w);

object w; /* a window object */

char *r; /* the name associated with the window */

This method is used to get the name associated with window w. The name associated
with a window is what is displayed at the top of the window, if it has a title bar.

Example:

object myWind;

char *n;

myWind = vNew(MainWindow, "App Name");

n = gGetName(myWind); /* n = "App Name" */

See also: New::MainWindow, SetName

[GetParent]GetParent::Window

prnt = gGetParent(wind);

object wind; /* child window object */

object prnt; /* parent window object */

This method is used to obtain the parent window object associated with window
wind.

Example:

object myWind, parentWind;

parentWind = gGetParent(myWind);

See also: SetParent, New::ChildWindow

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 45

[GetPosition]GetPosition::Window

r = gGetPosition(wind, vert, horz);

object wind; /* a window object */

int *vert; /* vertical position */

int *horz; /* horizontal position */

object r; /* wind arg passed */

This method is used to get the current position of a window. vert and horz are in
increments dictated by the mode selected by SetScalingMode::Application. The
window object passed is returned.

Example:

int y, x;

gGetPosition(myWind, &y, &x);

See also: SetScalingMode::Application, GetSize, SetPosition

[Gets]Gets::Window

r = gGets(wind, buf, len);

object wind; /* a window object */

char *buf; /* input buffer */

unsigned len; /* length of buffer */

char *r; /* buf */

This method is used to read (accept) a single line of text from a user until a return
is hit or len-1 key strokes have been entered and place them in buf.

This method returns a pointer to the buffer passed unless there is an error, in which
case NULL is returned. The input accepted will a return terminated line entered by the
user up to len-1 characters. However, the number of characters may be less if non-
blocking io is selected (via SetBlock) and there aren’t enough characters available.
SetRaw may also be used to control whether backspace processing will be performed.

Example:

object myWind;

char buf[80];

gGets(myWind, buf, sizeof(buf));

c© 1995-1996 Blake McBride

46 Dynace Windows Development System Manual

See also: SetBlock, SetRaw, Gets, Getch

[GetSize]GetSize::Window

r = gGetSize(wind, vert, horz);

object wind; /* a window object */

int *vert; /* vertical size */

int *horz; /* horizontal size */

object r; /* wind arg passed */

This method is used to get the current size of a window. vert and horz are in
increments dictated by the mode selected by SetScalingMode::Application. The
window object passed is returned.

Example:

int y, x;

gGetSize(myWind, &y, &x);

See also: SetScalingMode::Application, GetPosition, SetSize,

GetSize::Application

[GetTag]GetTag::Window

r = gGetTag(wind);

object wind; /* a window object */

object r; /* tag */

This method is used to obtain a Dynace object which has been associated with a
window via SetTag. The value return is the object which has been associated with
the window object wind. If there is no object associated with the window, NULL will
be returned.

Example:

object myWind, someObj;

someObj = gGetTag(myWind);

See also: SetTag, SetTag::Dialog

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 47

[Handle]Handle::Window

h = gHandle(wind);

object wind; /* window object */

HANDLE h; /* Windows handle */

This method is used to obtain the Windows internal handle associated with a window
object. Note that this will be 0 prior to executing Show on the window because that
is the point where Windows creates the handle.

Note that this method may be used with most WDS objects in order to obtain the
internal handle that Windows normally associates with each type of object. See the
appropriate documentation.

Example:

object myWind;

HANDLE h;

h = gHandle(myWind);

[Kbhit]Kbhit::Window

r = gKbhit(wind);

object wind; /* a window object */

int r; /* characters ready */

This method is used to determine if and how many characters are waiting in the
character input queue. This method is used in an attempt to provide a familiar
character based user input mechanism.

The value returned is the number of characters ready for input or zero if none are
available.

Example:

object myWind;

int n;

n = gKbhit(myWind);

See also: Getch, SetBlock, Gets

c© 1995-1996 Blake McBride

48 Dynace Windows Development System Manual

[LoadCursor]LoadCursor::Window

r = mLoadCursor(wind, csr);

object wind; /* a window object */

unsigned csr; /* cursor identifier */

object r; /* cursor object */

This method is used to load a programmer defined cursor and associate it with window
wind. The cursor would then be displayed any time the pointer was placed in the
window.

csr is a programmer defined unsigned integer which identifies the cursor. This iden-
tifier is normally a macro and defined through the resource editor. The cursor object
will be automatically destroyed whenever the window is destroyed or if a new cursor
is loaded.

The value returned is an object representing the cursor loaded, or NULL if the cursor
was not found.

Example:

object myWind;

mLoadCursor(myWind, MY_CURSOR);

See also: LoadSystemCursor, Load::ExternalCursor, Use

[LoadFont]LoadFont::Window

r = gLoadFont(wind, fname, sz);

object wind; /* a window object */

char *fname; /* font name */

int sz; /* point size */

object r; /* font object */

This method is used to load an arbitrary font by name at any point size and associate
it as the default font for future text output to window wind. fname is the full name
of the font as it appears when you list the available fonts via the control-panel / fonts
Windows utility, minus the font type in parentheses. sz indicates the desired point
size.

All font objects associated with a window will be automatically destroyed whenever
the window is destroyed.

The value returned is an object representing the font loaded, or NULL if the font was
not found.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 49

Note that fname may also be a Dynace object cast as a (char *).

Example:

object myWind;

gLoadFont(myWind, "Times New Roman", 12);

See also: LoadSystemFont, Indirect::ExternalFont, Use

[LoadIcon]LoadIcon::Window

r = mLoadIcon(wind, icn);

object wind; /* a window object */

unsigned icn; /* icon identifier */

object r; /* icon object */

This method is used to load a programmer defined icon and associate it with window
wind. The icon would then be displayed if window wind was iconized.

icn is a programmer defined unsigned integer which identifies the icon. This identifier
is normally a macro and defined through the resource editor. The icon object will be
automatically destroyed whenever the window is destroyed or if a new icon is loaded.

The value returned is an object representing the icon loaded, or NULL if the icon was
not found.

Example:

object myWind;

mLoadIcon(myWind, ALGOCORP_ICON);

See also: LoadSystemIcon, Load::ExternalIcon, Use

[LoadMenu]LoadMenu::Window

r = mLoadMenu(wind, mnu);

object wind; /* a window object */

unsigned mnu; /* menu identifier */

object r; /* menu object */

This method is used to load a programmer defined menu and associate it with window
wind. The menu would be displayed at the top of the window.

c© 1995-1996 Blake McBride

50 Dynace Windows Development System Manual

mnu is a programmer defined unsigned integer which identifies the menu. This iden-
tifier is normally a macro and defined through the resource editor. Any menu previ-
ously associated with the window is pushed on a stack so that previous menus may
be easily returned to in a last-in-first-out basis using the PopMenu method. All menus
associated with a window will be destroyed when the window is destroyed.

The value returned is an object representing the menu loaded, or NULL if the menu
was not found.

Example:

object myWind;

mLoadMenu(myWind, MY_MENU);

See also: Associate, PopMenu, LoadMenuStr, Load::ExternalMenu, Use

[LoadMenuStr]LoadMenuStr::Window

r = gLoadMenuStr(wind, mnu);

object wind; /* a window object */

char *mnu; /* menu identifier */

object r; /* menu object */

This method is used to load a programmer defined menu and associate it with window
wind. The menu would be displayed at the top of the window.

mnu is a programmer defined name which identifies the menu. This name is defined
through the resource editor. Any menu previously associated with the window is
pushed on a stack so that previous menus may be easily returned to in a last-in-first-
out basis using the PopMenu method. All menus associated with a window will be
destroyed when the window is destroyed.

Note that the LoadMenu method is used more frequently since the resource editors
assign macros to each menu name.

The value returned is an object representing the menu loaded, or NULL if the menu
was not found.

Example:

object myWind;

gLoadMenuStr(myWind, "mymenu");

See also: Associate, LoadMenu, LoadStr::ExternalMenu, Use

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 51

[LoadSystemCursor]LoadSystemCursor::Window

r = gLoadSystemCursor(wind, csr);

object wind; /* a window object */

LPCSTR csr; /* cursor identifier */

object r; /* cursor object */

This method is used to load a Windows predefined cursor and associate it with window
wind. The cursor would then be displayed if the pointer was positioned over the
window.

csr is a Windows defined macro which identifies the cursor. The available options
are defined in the Windows documentation under the function named LoadCursor

and normally begin with IDC_. The cursor object will be automatically destroyed
whenever the window is destroyed or if a new cursor is loaded.

The value returned is an object representing the cursor loaded, or NULL if the cursor
was not found.

Example:

object myWind;

gLoadSystemCursor(myWind, IDC_CROSS);

See also: LoadCursor, LoadSys::SystemCursor, Use

[LoadSystemFont]LoadSystemFont::Window

r = gLoadSystemFont(wind, fnt);

object wind; /* a window object */

unsigned fnt; /* font identifier */

object r; /* font object */

This method is used to load a Windows predefined font and associate it with window
wind. The last font associated with a window is the one which will be used when any
text is output to the window.

fnt is a Windows defined macro which identifies the font. The available options are
defined in the Windows documentation under the function named GetStockObject

and normally end with _FONT. The font object will be automatically destroyed when-
ever the window is destroyed.

The value returned is an object representing the font, or NULL if the font was not
found.

c© 1995-1996 Blake McBride

52 Dynace Windows Development System Manual

Example:

object myWind;

gLoadSystemFont(myWind, SYSTEM_FONT);

See also: LoadFont, Load::SystemFont, Use

[LoadSystemIcon]LoadSystemIcon::Window

r = gLoadSystemIcon(wind, icn);

object wind; /* a window object */

LPCSTR icn; /* icon identifier */

object r; /* icon object */

This method is used to load a Windows predefined icon and associate it with window
wind. The icon would then be displayed if window wind was iconized.

icn is a Windows defined macro which identifies the icon. The available options
are defined in the Windows documentation under the function named LoadIcon and
normally begin with IDI_. The icon object will be automatically destroyed whenever
the window is destroyed or if a new icon is loaded.

The value returned is an object representing the icon loaded, or NULL if the icon was
not found.

Example:

object myWind;

gLoadSystemIcon(myWind, IDI_APPLICATION);

See also: LoadIcon, LoadSys::SystemIcon, Use

[MenuItemMode]MenuItemMode::Window

r = mMenuItemMode(wind, itm, mod);

object wind; /* a window object */

unsigned itm; /* menu item */

unsigned mod; /* menu item mode */

object r; /* the menu */

This method is used to set the mode associated with a particular item in the menu
which is currently attached to window wind.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 53

itm is a programmer defined macro which identifies one particular choice among those
available within the menu which is currently attached to window wind. This macro
is defined while the programmer defines the entire menu using the resource editor.

mod may be one of MF_DISABLED, MF_ENABLED or MF_GRAYED and is documented in
the Windows documentation under the function EnableMenuItem.

The menu object associated with the window is returned.

Example:

mMenuItemMode(win, ID_FILE_MESSAGE, MF_GRAYED);

See also: LoadMenu, Associate

[Message]Message::Window

r = gMessage(wind, msg);

object wind; /* window object */

char *msg; /* message */

object r; /* window object */

This method is used to open up a temporary informational window. The window will
contain the message given by msg and the user must acknowledge the window prior
to continuing by hitting an OK button.

The value returned is the window passed.

Example:

object myWind;

gMessage(myWind, "Press OK to continue.");

See also: MessageWithTopic

[MessageWithTopic]MessageWithTopic::Window

r = gMessageWithTopic(wind, msg, tpc);

object wind; /* window object */

char *msg; /* message */

char *tpc; /* help topic */

object r; /* window object */

c© 1995-1996 Blake McBride

54 Dynace Windows Development System Manual

This method is used to open up a temporary informational window. The window will
contain the message given by msg and the user must acknowledge the window prior
to continuing by hitting an OK button.

If the user hits the F1 key while presented with the message, the help topic identified
by tpc will get displayed via the Windows help system.

The value returned is the window passed.

Example:

object myWind;

gMessageWithTopic(myWind, "Press OK to continue.", "mytopic");

See also: Message and the HelpSystem class.

[New]New::Window

r = vNew(Window);

object r; /* new window */

This class method is used to create a basic window object. It is used by all the
subclasses of Window and would not normally be used by a programmer.

The value returned is the new window created.

Example:

object myWind;

myWind = vNew(Window);

See also: New::MainWindow, New::ChildWindow, New::PopupWindow, Show

Dispose

[NewBuiltIn]NewBuiltIn::Window

r = gNewBuiltIn(Window, class, parent);

char *class; /* Windows built in class designation */

object parent; /* parent window object */

object r; /* new child window */

This class method is used to create a child window which is used as a Windows-
built-in control. Window represents the Window class and is typed in as shown. class

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 55

is a string representing one of the window classes build into Windows. This string
is defined and documented by Windows under the function named CreateWindow.
parent represents the parent window object and must be specified.

The value returned is the new child window (control) created.

Example:

object myWind, ctl;

myWind = vNew(MainWindow, "App Name");

ctl = gNewBuiltIn(Window, "button", myWind);

See also: New::ButtonWindow

[PopMenu]PopMenu::Window

r = gPopMenu(wind);

object wind; /* a window object */

object r; /* menu object */

This method is used to remove and destroy the current menu associated with window
wind and restore the previous menu associated with the window. A last-in-first-
out list of menus associated with a window may be established via the LoadMenu,
LoadMenuStr or Use methods.

All function associations and modes previously associated with the new menu will be
restored.

The object returned is the new menu object.

Example:

object myWind;

gPopMenu(myWind);

See also: LoadMenu, Use

[Printf]Printf::Window

r = vPrintf(wind, fmt, ...);

object wind; /* a window object */

char *fmt; /* format string */

int r; /* length of output */

c© 1995-1996 Blake McBride

56 Dynace Windows Development System Manual

This method is used to display a string of text (str) in a sequential fashion on window
wind. It is analogous to the standard C library function fprintf. All of the standard
features of your C library fprintf function are supported and that documentation
should be consulted for full documentation on the arguments.

This method is used to support the standard streams interface, is actually defined by
the Stream class, and is documented here for convenience.

Note that this method begins with “v” since it takes variable arguments. The length
of the resulting output will be returned.

Example:

object myWind;

int age = 32;

vPrintf(myWind, "My age =- %d\n", age);

See also: TextOut, Puts, Write

[Puts]Puts::Window

r = gPuts(wind, str);

object wind; /* a window object */

char *str; /* string to be output */

int r; /* length of str */

This method is used to display a string of text (str) in a sequential fashion on
window wind. This method is used to support the standard streams interface, is
actually defined by the Stream class, and is documented here for convenience.

str is the text to be displayed. Text str will be displayed on window wind and its
length will be returned.

Example:

object myWind;

gPuts(myWind, "Hello World\n");

See also: TextOut, Printf, Write

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 57

[Read]Read::Window

r = gRead(wind, buf, len);

object wind; /* a window object */

char *buf; /* input buffer */

unsigned len; /* length of buffer */

int r; /* bytes read */

This method is used to read (accept) len key strokes from the user and place them
in buf.

Since the Window class is a subclass of Stream, this method is mainly provided to
support the standard interface dictated by the Stream class.

This method returns the number of characters actually accepted. It will not be more
than len, but may be less if non-blocking io is selected (via SetBlock) and there aren’t
enough characters available. SetRaw may also be used to control whether backspace
processing will be performed.

Example:

object myWind;

char buf[80];

gRead(myWind, buf, sizeof(buf)-1);

See also: SetBlock, SetRaw, Gets, Getch

[ScrollHorz]ScrollHorz::Window

r = gScrollHorz(wind, cols);

object wind; /* a window object */

int cols; /* columns to scroll */

object r; /* the window object */

This method is used to perform a horizontal scrolling of the text in window wind.
This has the same effect as if the user caused horizontal scrolling via the horizontal
scroll bar at the bottom of the window. No text is lost, a different portion of the text
is displayed.

wind is the window which is to be affected, and cols is the number of columns to
scroll. If cols is positive the scroll moves the text to the left, and negative moves the
text to the right.

The scaling factor associated with cols is set by SetScalingMode::Application.

c© 1995-1996 Blake McBride

58 Dynace Windows Development System Manual

Example:

object myWind;

gScrollHorz(myWind, 2);

See also: ScrollVert, SetScalingMode::Application

[ScrollVert]ScrollVert::Window

r = gScrollVert(wind, rows);

object wind; /* a window object */

int rows; /* rows to scroll */

object r; /* the window object */

This method is used to perform a vertical scrolling of the text in window wind. This
has the same effect as if the user caused vertical scrolling via the vertical scroll bar
at the right side of the window. No text is lost, a different portion of the text is
displayed.

wind is the window which is to be affected, and rows is the number of rows to scroll.
If rows is positive the scroll moves the text up, and negative moves the text down.

The scaling factor associated with rows is set by SetScalingMode::Application.

Example:

object myWind;

gScrollVert(myWind, 2);

See also: ScrollHorz, VertShift, SetScalingMode::Application

[SetBlock]SetBlock::Window

r = gSetBlock(wind, flag);

object wind; /* a window object */

int flag; /* enable/disable flag */

int r; /* previous flag */

This method is used to set the blocking mode associated with keyboard IO. It only
has effect on Read, Gets, and Getch. If flag is 1, blocking is enabled, and 0 disables
blocking. When a new window is created it defaults to blocking enabled.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 59

If blocking is turned on and a keyboard entry is requested (via Read, Gets or Getch),
the keyboard entry function will not return until the request can be satisfied. If,
however, blocking is disabled, a keyboard request is made, and insufficient characters
are available, then the input function will return immediately with a return value
indicating the result was short.

The value returned by this method is the previous blocking mode.

Example:

object myWind;

gSetBlock(myWind, 0);

See also: Getch, SetRaw, Gets

[SetMaxLines]SetMaxLines::Window

r = gSetMaxLines(wind, rows);

object wind; /* a window object */

int rows; /* max rows */

int r; /* previous max rows */

This method is used to set or obtain the maximum number of lines of text which may
be associated to a window. This includes all lines associated with a window, including
lines not being displayed because they are scrolled off the screen. Whenever rows

number of lines are exceeded, WDS automatically and permanently removes the lines
at the logical top of the internal buffer in order to make room for new lines.

WDS keeps a buffer which holds a programmer definable number of lines of text.
The user is then able to scroll through this text. If the application attempts to
display more lines than this maximum (via vPrintf for example) the system will
automatically call gVertShift in order to eliminate the top line and make room for
the new line being appended.

wind is the window which is to be affected, and rows is the maximum number of rows
to retain. If rows is zero or negative, the value associated with the window will not
be changed. This is used to obtain the current value without changing it.

The value returned is the previous value associated with the window.

Example:

object myWind;

gSetMaxLines(myWind, 60);

c© 1995-1996 Blake McBride

60 Dynace Windows Development System Manual

See also: VertShift

[SetName]SetName::Window

r = gSetName(wind, name);

object wind; /* a window object */

char *name; /* the new name */

object r; /* w arg passed */

This method is used to set the name associated with window wind. The name asso-
ciated with a window is what is displayed at the top of the window, if it has a title
bar. name may also be an object typecast to a (char *). The value returned is the
window (wind) object passed.

Example:

object myWind;

myWind = vNew(MainWindow, "Old Name");

gSetName(myWind, "New Name");

See also: New::MainWindow, GetName

[SetParent]SetParent::Window

r = gSetParent(wind, prnt);

object wind; /* child window object */

object prnt; /* parent window object */

object r; /* wind */

This method is used to create a child / parent window relationship. This relationship
is automatically established when a child window is created. However, this method
is provided for increased flexibility.

Whenever the parent window is disposed, WDS will automatically dispose of all its
children windows. This relationship should normally be established prior to the child
window being Shown.

The value returned is the child window passed.

Example:

object myWind, parentWind;

gSetParent(myWind, parentWind);

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 61

See also: GetParent

[SetPosition]SetPosition::Window

r = gSetPosition(wind, vert, horz);

object wind; /* a window object */

int vert; /* vertical position */

int horz; /* horizontal position */

object r; /* wind arg passed */

This method is used to set the initial position of a window. vert and horz are in
increments dictated by the mode selected by SetScalingMode::Application. The
window object passed is returned.

If this function is not called, Windows will automatically set it to a reasonable default.

Example:

object myWind;

myWind = vNew(MainWindow, "App Name");

gSetPosition(myWind, 3, 10);

See also: SetScalingMode::Application, SetSize, GetPosition

[SetRaw]SetRaw::Window

r = gSetRaw(wind, flag);

object wind; /* a window object */

int flag; /* enable/disable flag */

int r; /* previous flag */

This method is used to set the raw mode associated with keyboard IO. It only has
effect on Read, Gets, and Getch. If flag is 1, raw mode is enabled, and 0 disables raw
mode. The default is raw mode disabled.

Normally, with raw mode disabled, when a user enters keyboard data, they are able
to correct mistakes by using the backspace and reentering the correct data. The
resulting data the program receives is the final, corrected input.

When raw mode is enabled, every key the user hits gets returned. This includes
backspaces. Therefore, with raw mode enabled, if the user types “ABD” followed by
backspace and then “C”, the program will receive all five characters hit. However,
with raw mode disabled, the program would only receive the resulting string, “ABC”.

The value returned by this method is the previous raw mode.

c© 1995-1996 Blake McBride

62 Dynace Windows Development System Manual

Example:

object myWind;

gSetRaw(myWind, 1);

See also: Getch, SetBlock, Gets

[SetSize]SetSize::Window

r = gSetSize(wind, vert, horz);

object wind; /* a window object */

int vert; /* vertical size */

int horz; /* horizontal size */

object r; /* wind arg passed */

This method is used to set the initial size of a window. vert and horz are in in-
crements dictated by the mode selected by SetScalingMode::Application. The
window object passed is returned.

If this function is not called, Windows will automatically set it to a reasonable default.

Example:

object myWind;

myWind = vNew(MainWindow, "App Name");

gSetSize(myWind, 10, 40);

See also: SetScalingMode::Application, SetPosition, GetSize

[SetStyle]SetStyle::Window

r = gSetStyle(wind, sty);

object wind; /* a window object */

DWORD sty; /* the window style to use */

object r; /* returns wind */

This method is used to set the window style associated with window wind to style sty.
The DWORD data type and valid styles are defined by Windows and fully documented
by the Windows documentation. See the Windows documentation for the function
called CreateWindow. The style types normally begin with WS_ and would be or’ed
together to form the selected style. Note that WDS automatically assigns reasonable
defaults to a window style when it is created.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 63

Example:

object myWind;

myWind = vNew(MainWindow, "App Name");

gSetStyle(myWind, WS_OVERLAPPEDWINDOW | WS_VSCROLL | WS_HSCROLL);

[SetTag]SetTag::Window

r = gSetTag(wind, tag);

object wind; /* a window object */

object tag; /* tag */

object r; /* previous tag */

This method is used to associated an arbitrary Dynace object with a window object.
This may later be retrieved via the GetTag method. Since WDS passes around the
window object to all Window methods this mechanism may be used to pass additional
information with the window. And since Dynace treats all objects in a uniform
manner, this information attached to the window may be arbitrarily complex.

WDS does not dispose of the tag when the window object is disposed. This method
returns any previous object associated with the window or NULL.

Example:

object myWind;

gSetTag(myWind, gNewWithInt(ShortInteger, 17));

See also: GetTag, SetTag::Dialog

[SetTopic]SetTopic::Window

pt = gSetTopic(wind, tpc);

object wind; /* child window object */

char *tpc; /* help topic */

char *pt; /* previous help topic */

This method is used to associate help text with window wind. The help text is defined
using the Windows help system and labeled with the topic indicated by tpc. Then,
if the user hits the F1 key while in the window, WDS will automatically bring up the
Windows help system and find the indicated topic.

WDS also supports dialog and control specific topics. See the appropriate sections.

c© 1995-1996 Blake McBride

64 Dynace Windows Development System Manual

This method returns any previous topic associated with the window.

Example:

object myWind;

gSetTopic(myWind, "myWindHelp");

See also: The HelpSystem class.

[Show]Show::Window

r = gShow(wind);

object wind; /* a window object */

int r; /* always 0 */

Once a window object is created (via vNew) and its various attributes set, gShow is
called in order to actually create the Windows window, with the selected attributes,
and display (show) it.

Example:

object myWind;

myWind = vNew(PopupWindow, "Name", 10, 40);

gShow(myWind);

See also: AutoShow, ProcessMessages::MainWindow

[TextBrush]TextBrush::Window

r = gTextBrush(wind, brsh);

object wind; /* a window object */

object brsh; /* brush object */

object r; /* wind */

This method is used to determine what brush object is used for foreground text
which is displayed. Any previously associated brush object will be disposed. This
brush object will also be automatically disposed when the window is disposed.

The window passed is returned.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 65

Example:

object myWind;

gTextBrush(myWind, vNew(SolidBrush, 255, 0, 0));

See also: BackBrush, Use, SetBackBrush::Application and the Brush classes

[TextOut]TextOut::Window

r = gTextOut(wind, row, col, txt);

object wind; /* a window object */

int row; /* row number of output */

int col; /* column number of output */

char *txt; /* string to be output */

object r; /* wind */

This method is used to display a string of text (txt) at row row and column col. row
and col have their origin in the upper left hand corner of the window and are scaled
as dictated by the SetScalingMode::Application method. Their index origin is 0.

This method returns the window argument passed.

Example:

object myWind;

gTextOut(myWind, 10, 30, "Hello World");

See also: Write, Puts, Printf

[Update]Update::Window

r = gUpdate(wind);

object wind; /* a window object */

object r; /* wind */

This method is used to explicitly update the display with changes the program may
have made to window wind. WDS normally handles this need, however, this method
is available in case the programmer performs special processing and wishes to update
the entire window at one time.

This method returns the window argument passed. Update::MainWindow.

c© 1995-1996 Blake McBride

66 Dynace Windows Development System Manual

Example:

object myWind;

gUpdate(myWind);

[Use]Use::Window

r = gUse(wind, obj);

object wind; /* a window object */

object obj; /* arbitrary object */

object r; /* the object passed */

This method is used as a general purpose mechanism to associated a number of object
types with a window. obj may be a Font, Icon, Cursor, Menu, or the background
Brush object. Those objects would have normally been created via their associated
classes and then may be associated with a window via this method.

Note that the same object should not be associated with more than one window. The
problem is that if one window is deleted, WDS would delete all the objects associated
with that window and then the other window would reference objects which have
been deleted. The way around this is to use the Copy method in order to make a copy
of an object prior to associating with a new window. This way there would be two
independent objects such that if one is deleted the other would still exist.

Note also that the Application class may be used to set application wide defaults
for these types of objects.

The value returned is the object passed.

Example:

object myWind, myOtherWind, someFont;

someFont = vNew(ExternalFont, "Times New Roman", 12);

if (someFont) {

gUse(myWind, someFont);

gUse(myOtherWind, gCopy(someFont));

}

See also: LoadFont, LoadIcon, LoadCursor, LoadMenu, TextBrush, BackBrush

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 67

[VertShift]VertShift::Window

r = gVertShift(wind, rows);

object wind; /* a window object */

int rows; /* rows to shift */

object r; /* the window object */

This method is used to perform a vertical shift of the text in the memory buffer which
is being displayed in the window. WDS keeps a buffer which holds a programmer
definable number of lines of text. The user is then able to scroll through this text. If
the application attempts to display more lines than this maximum (via vPrintf for
example) the system will automatically call gVertShift in order to eliminate the top
line and make room for the new line being appended. This method is mainly used
internally.

wind is the window which is to be affected, and rows is the number of rows to scroll.
If rows is positive the scroll moves the text up, and negative moves the text down.
Scrolling up permanently destroys lines at the beginning of the buffer and scrolling
down permanently destroys lines at the end of the buffer.

The scaling factor associated with rows is set by SetScalingMode::Application and
the maximum lines associated with a window may be set with SetMaxLines.

Example:

object myWind;

gVertShift(myWind, 2);

See also: ScrollVert, SetMaxLines

[Write]Write::Window

r = gWrite(wind, txt, len);

object wind; /* a window object */

char *txt; /* string to be output */

unsigned len; /* length of string */

int r; /* bytes written */

This method is used to display a string of text (txt) in a sequential fashion on window
wind. Since the Window class is a subclass of Stream, this method is mainly provided
to support the standard interface dictated by the Stream class. By providing this
method, the Window class automatically inherits the Puts and Printf capability.

c© 1995-1996 Blake McBride

68 Dynace Windows Development System Manual

txt is the text to be displayed and len is the length of that string. Text txt will be
displayed on window wind and len will be returned.

Example:

object myWind;

gWrite(myWind, "Hello World\n", 12);

See also: TextOut, Puts, Printf

4.4.1 Main Window

This class, named MainWindow, is used to create and manipulate an application’s main
window. There is normally one main window associated with each application and this is
the first window created.

This class is a subclass of the Window class and therefore inherits all of the Window

class’s functionality. The methods documented in this subsection are only those which are
particular to the MainWindow class.

[New]New::MainWindow

r = vNew(MainWindow, ttl);

char *ttl; /* window title */

object r; /* new window */

This class method is used to create the main application window. Since this is a class
method the first argument must be literally MainWindow. The window title (ttl) will
appear at the top of the window.

The value returned is the new window created.

Example:

object myWind;

myWind = vNew(MainWindow, "My Application");

See also: New::ChildWindow, New::PopupWindow, Show, Dispose::Window

[ProcessMessages]ProcessMessages::MainWindow

r = gProcessMessages(wind);

object wind; /* a window object */

int r; /* final message result */

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 69

Once the main application window is created (via vNew) and its various attributes set,
gProcessMessages is called in order to actually create the Windows window, with
the selected attributes, display (show) it, and process the application’s messages.
Processing the application’s messages is what allows the user to interact with the
application.

The value returned is the return value specified when the application is terminated.
This can be specified via QuitApplication::Application.

Example:

object myWind;

myWind = vNew(MainWindow, "Application Name");

gProcessMessages(myWind);

See also: New, Show::Window, ProcessMessages::MessageDispatcher

4.4.2 Child Windows

The Child Window class, called ChildWindow, is used in the creation of windows which
are children of other windows. As such, they can not be positioned outside of their parent
window, and they get iconized along with their parent window.

This class is a subclass of the Window class and therefore inherits all of the Window

class’s functionality. The methods documented in this subsection are only those which are
particular to the ChildWindow class.

[New]New::ChildWindow

r = vNew(ChildWindow, prnt, rows, cols);

object prnt; /* parent window object */

int rows; /* length of window */

int cols; /* width of window */

object r; /* new window */

This class method is used to create a child window. Since this is a class
method the first argument must be literally ChildWindow. prnt represents the
parent window object of which the new window will be a child. rows and cols

determine the initial size of the window in are specified in increments dictated by
SetScalingMode::Application.

The default style associated with the child window is WS_CHILD | WS_VISIBLE and
may be changed with SetStyle::Window. The position may be set with
SetPosition::Window.

The value returned is the new window created.

c© 1995-1996 Blake McBride

70 Dynace Windows Development System Manual

Example:

object myWind, mainWind;

myWind = vNew(ChildWindow, mainWind, 10, 45);

See also: New::MainWindow, New::PopupWindow, Show, Dispose::Window

4.4.3 Popup Windows

The PopupWindow class is used to create arbitrary windows which function independently
of other windows. That is, they may overlap or be moved outside of other windows and
iconized independently of other windows. If, however, a popup window is associated with a
parent window (via SetParent::Window) then it may move outside the parent but will be
iconized with it.

This class is a subclass of the Window class and therefore inherits all of the Window

class’s functionality. The methods documented in this subsection are only those which are
particular to the PopupWindow class.

[New]New::PopupWindow

r = vNew(PopupWindow, name, rows, cols);

char *name; /* window title */

int rows; /* length of window */

int cols; /* width of window */

object r; /* new window */

This class method is used to create a popup window. Since this is a class method the
first argument must be literally PopupWindow. name represents the window title and
will appear in the window’s top border. rows and cols determine the initial size of the
window in are specified in increments dictated by SetScalingMode::Application.

The default style associated with the popup window is WS_POPUP | WS_VISIBLE

| WS_CAPTION | WS_THICKFRAME | WS_MINIMIZEBOX | WS_MAXIMIZEBOX | WS_

SYSMENU

and may be changed with SetStyle::Window. The position may be set with
SetPosition::Window.

The value returned is the new window created.

Example:

object myWind, mainWind;

myWind = vNew(PopupWindow, "Window Title", 10, 45);

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 71

See also: New::MainWindow, New::ChildWindow, Show, Dispose::Window

4.5 Printing

The Printer class is used for all aspects of printing. It is a subclass of the Dynace Stream
class and as such inherits all of its functionality.

All methods in the class use an argument referred to as pntr. This will always be
the printer object returned by QueryPrinter, New or NewWithHDC and used to identify the
printer which is to be effected.

The value returned by all methods which cause text or graphics output is very significant.
During normal operation, the printer object passed will be returned. However, if an error
occurs or the user aborted the report a NULL will be returned. In this case further output
should be avoided (although it won’t hurt - it’ll just be ignored) and the printer object
should be disposed.

All positioning parameters are in increments dictated by SetScale. Positions begin in
the upper left hand corner and have an index origin of 0.

[Arc]Arc::Printer

r = gArc(pntr, yBeg, xBeg, yEnd, xEnd, yaBeg, xaBeg, yaEnd, xaEnd);

object pntr; /* printer object */

int yBeg; /* starting row */

int xBeg; /* starting column */

int yEnd; /* ending row */

int xEnd; /* ending column */

int yaBeg; /* starting arc row */

int xaBeg; /* starting arc column */

int yaEnd; /* ending arc row */

int xaEnd; /* ending arc column */

object r; /* printer object */

This method is used to output an elliptical arc to the printer. The currently selected
pen object will indicate the thickness and pattern of the outline of the shape, and
the currently selected brush object will be used to determine what pattern the shape
will be filled with. The parameters indicate location of the beginning and ending of
the shape as well as the coordinated of the arc and are in increments dictated by
SetScale.

See the note at the beginning of this section regarding the return value.

c© 1995-1996 Blake McBride

72 Dynace Windows Development System Manual

Example:

object pntr;

if (!gArc(pntr, 10, 10, 180, 140, 12, 12, 128, 135))

abort report;

See also: NewPage, SetScale, Use, Line, Rectangle, Ellipse, RoundRect,

Chord, Pie

[Chord]Chord::Printer

r = gChord(pntr, yBeg, xBeg, yEnd, xEnd,

ylBeg, xlBeg, ylEnd, xlEnd);

object pntr; /* printer object */

int yBeg; /* starting row */

int xBeg; /* starting column */

int yEnd; /* ending row */

int xEnd; /* ending column */

int ylBeg; /* starting line row */

int xlBeg; /* starting line column */

int ylEnd; /* ending line row */

int xlEnd; /* ending line column */

object r; /* printer object */

This method is used to output a chord shape to the printer. The currently selected
pen object will indicate the thickness and pattern of the outline of the shape, and
the currently selected brush object will be used to determine what pattern the shape
will be filled with. The parameters indicate location of the beginning and ending of
the shape as well as the coordinated of the intersecting line and are in increments
dictated by SetScale.

See the note at the beginning of this section regarding the return value.

Example:

object pntr;

if (!gChord(pntr, 10, 10, 180, 140, 12, 12, 128, 135))

abort report;

See also: NewPage, SetScale, Use, Line, Rectangle, Ellipse, RoundRect, Pie,

Arc

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 73

[DeepDispose]DeepDispose::Printer

This method performs the same function as Dispose. See that method for details.

[Dispose]Dispose::Printer

r = gDispose(pntr);

object pntr; /* printer object */

object r; /* NULL */

This method is used to flush the final output page, close the printer and dispose of
the printer object. It must be called when a report is is complete and the printer is
no longer needed.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object pntr;

pntr = gDispose(pntr);

[Ellipse]Ellipse::Printer

r = gEllipse(pntr, yBeg, xBeg, yEnd, xEnd);

object pntr; /* printer object */

int yBeg; /* starting row */

int xBeg; /* starting column */

int yEnd; /* ending row */

int xEnd; /* ending column */

object r; /* printer object */

This method is used to output an ellipse to the printer. The currently selected pen
object will indicate the thickness and pattern of the outline of the shape, and the
currently selected brush object will be used to determine what pattern the shape will
be filled with. The parameters indicate location of the beginning and ending of the
shape and are in increments dictated by SetScale.

See the note at the beginning of this section regarding the return value.

c© 1995-1996 Blake McBride

74 Dynace Windows Development System Manual

Example:

object pntr;

if (!gEllipse(pntr, 10, 20, 30, 40))

abort report;

See also: NewPage, SetScale, Use, Line, Rectangle, RoundRect, Chord, Pie,

Arc

[Handle]Handle::Printer

r = gHandle(pntr);

object pntr; /* printer object */

HANDLE hdc; /* handle device context */

This method is used to obtain the device context handle associated with an opened
printer represented by pntr. It is used internally by Windows and should not normally
be needed.

Example:

HDC hdc;

hdc = (HDC) gHandle(pntr);

[Line]Line::Printer

r = gLine(pntr, yBeg, xBeg, yEnd, xEnd);

object pntr; /* printer object */

int yBeg; /* starting row */

int xBeg; /* starting column */

int yEnd; /* ending row */

int xEnd; /* ending column */

object r; /* printer object */

This method is used to output a line to the printer. The currently selected pen object
will indicate the thickness and pattern of the line. The parameters indicate location
of the beginning and ending of the line and are in increments dictated by SetScale.

See the note at the beginning of this section regarding the return value.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 75

Example:

object pntr;

if (!gLine(pntr, 10, 20, 30, 40))

abort report;

See also: NewPage, SetScale, Use, Arc, Rectangle, Ellipse, RoundRect,

Chord, Pie

[LoadFont]LoadFont::Printer

r = gLoadFont(pntr, fname, sz);

object pntr; /* printer object */

char *fname; /* font name */

int sz; /* point size */

object r; /* font object */

This method is used to load an arbitrary font by name at any point size and associate
it as the default font for future text output to printer pntr. fname is the full name of
the font as it appears when you list the available fonts via the control-panel / fonts
Windows utility, minus the font type in parentheses. sz indicates the desired point
size.

Any font object previously associated with the printer will be disposed. When the
printer object is disposed, the font object will also be disposed.

The value returned is an object representing the font loaded, or NULL if the font was
not found.

Note that fname may also be a Dynace object cast as a (char *).

Example:

object pntr;

gLoadFont(pntr, "Times New Roman", 12);

See also: LoadSystemFont, Indirect::ExternalFont, Use

c© 1995-1996 Blake McBride

76 Dynace Windows Development System Manual

[LoadSystemFont]LoadSystemFont::Printer

r = gLoadSystemFont(pntr, fnt);

object pntr; /* a printer object */

unsigned fnt; /* font identifier */

object r; /* font object */

This method is used to load a Windows predefined font and associate it with printer
pntr. The last font associated with a printer is the one which will be used when any
text is output to the printer.

fnt is a Windows defined macro which identifies the font. The available options are
defined in the Windows documentation under the function named GetStockObject

and normally end with _FONT. The font object will be automatically destroyed when-
ever the printer object is disposed.

The value returned is an object representing the font, or NULL if the font was not
found.

Example:

object pntr;

gLoadSystemFont(pntr, SYSTEM_FONT);

See also: LoadFont, Load::SystemFont, Use

[New]New::Printer

pntr = vNew(Printer, pwind, rname);

object pwind; /* parent window */

char *rname; /* report name */

object pntr; /* new printer object */

This class method is used to create a new Printer object which will be used by the
Printer instance methods to control the printer, fonts and content of output. This
method opens up the default printer.

pwind is the window which will act as the parent to any messages which may be
displayed when a report is being printed. rname determines what the report is referred
to as in any messages.

The value returned represents the printer to be used. If the default printer couldn’t
be opened, NULL will be returned. If an object is returned, it must be disposed (via
Dispose) when it is no longer needed.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 77

Example:

object pntr, pwind;

pntr = vNew(Printer, pwind, "My Report");

See also: QueryPrinter, NewWithHDC

[NewPage]NewPage::Printer

r = gNewPage(pntr);

object pntr; /* printer object */

object r; /* printer object */

This method is used to flush and eject the current output page (if anything had been
output to it) and prepare for a possible new page of output.

See the note at the beginning of this section regarding the return value.

Example:

object pntr;

if (!gNewPage(pntr))

abort report;

[NewWithHDC]NewWithHDC::Printer

pntr = gNewWithHDC(Printer, pwind, rname, hdc);

object pwind; /* parent window */

char *rname; /* report name */

HDC hdc; /* device context */

object pntr; /* new printer object */

This class method is used to create a new Printer object which will be used by the
Printer instance methods to control the printer, fonts and content of output.

This method opens up the printer identified by hdc. This is a Windows internal
identifier and may be obtained via the PrintDialog class.

pwind is the window which will act as the parent to any messages which may be
displayed when a report is being printed. rname determines what the report is referred
to as in any messages.

The value returned represents the printer to be used. If the printer couldn’t be
opened, NULL will be returned.

c© 1995-1996 Blake McBride

78 Dynace Windows Development System Manual

This method is seldom needed due to QueryPrinter and New. Use them. If an object
is returned, it must be disposed (via Dispose) when it is no longer needed.

Example:

object pntr, pwind;

HDC hdc;

pntr = gNewWithHDC(Printer, pwind, "My Report", hdc);

See also: QueryPrinter, New

[Pie]Pie::Printer

r = gPie(pntr, yBeg, xBeg, yEnd, xEnd, yaBeg, xaBeg, yaEnd, xaEnd);

object pntr; /* printer object */

int yBeg; /* starting row */

int xBeg; /* starting column */

int yEnd; /* ending row */

int xEnd; /* ending column */

int yaBeg; /* starting arc row */

int xaBeg; /* starting arc column */

int yaEnd; /* ending arc row */

int xaEnd; /* ending arc column */

object r; /* printer object */

This method is used to output a pie shaped wedge to the printer. The currently
selected pen object will indicate the thickness and pattern of the outline of the shape,
and the currently selected brush object will be used to determine what pattern the
shape will be filled with. The parameters indicate location of the beginning and
ending of the shape as well as the coordinated of the intersecting line and are in
increments dictated by SetScale.

See the note at the beginning of this section regarding the return value.

Example:

object pntr;

if (!gPie(pntr, 10, 10, 180, 140, 12, 12, 128, 135))

abort report;

See also: NewPage, SetScale, Use, Line, Rectangle, Ellipse, RoundRect,

Chord, Arc

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 79

[Printf]Printf::Printer

r = vPrintf(pntr, fmt, ...);

object pntr; /* printer object */

char *fmt; /* format string */

int r; /* length of output */

This method is used to output a string of text (str) in a sequential fashion on printer
pntr. It is analogous to the standard C library function fprintf. All of the standard
features of your C library fprintf function are supported and that documentation
should be consulted for full documentation on the arguments.

This method is used to support the standard streams interface, is actually defined by
the Stream class, and is documented here for convenience.

Note that this method begins with “v” since it takes variable arguments.

The value returned by this method is very significant. During normal operation,
the length of the output string will be returned. However, if an error occurs or the
user aborted the report a -1 will be returned. In this case further output should be
avoided (although it won’t hurt - it’ll just be ignored) and the printer object should
be disposed.

Example:

object pntr;

int age = 32;

if (-1 == vPrintf(pntr, "My age =- %d\n", age))

goto abort report;

See also: TextOut, Puts

[Puts]Puts::Printer

r = gPuts(pntr, str);

object pntr; /* printer object */

char *str; /* string to be output */

int r; /* length of str */

This method is used to output a string of text (str) in a sequential fashion on printer
pntr. This method is used to support the standard streams interface, is actually
defined by the Stream class, and is documented here for convenience. str is the text
to be output.

c© 1995-1996 Blake McBride

80 Dynace Windows Development System Manual

The value returned by this method is very significant. During normal operation,
the length of the output string will be returned. However, if an error occurs or the
user aborted the report a -1 will be returned. In this case further output should be
avoided (although it won’t hurt - it’ll just be ignored) and the printer object should
be disposed.

Example:

object pntr;

if (-1 == gPuts(pntr, "Hello World\n"))

goto abort report;

See also: TextOut, Printf

[QueryPrinter]QueryPrinter::Printer

pntr = gQueryPrinter(Printer, pwind, rname);

object pwind; /* parent window */

char *rname; /* report name */

object pntr; /* new printer object */

This class method is used to create a new Printer object which will be used by the
Printer instance methods to control the printer, fonts and content of output.

This method queries the user for printer selection and optional configuration, and
uses that information to open the selected printer.

pwind is the window which will act as the parent to any messages which may be
displayed when a report is being printed. rname determines what the report is referred
to as in any messages.

The value returned represents the printer to be used. If the user canceled the printer
selection or the printer couldn’t be opened, NULL will be returned. If an object is
returned, it must be disposed (via Dispose) when it is no longer needed.

Example:

object pntr, pwind;

pntr = gQueryPrinter(Printer, pwind, "My Report");

See also: New, NewWithHDC

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 81

[Rectangle]Rectangle::Printer

r = gRectangle(pntr, yBeg, xBeg, yEnd, xEnd);

object pntr; /* printer object */

int yBeg; /* starting row */

int xBeg; /* starting column */

int yEnd; /* ending row */

int xEnd; /* ending column */

object r; /* printer object */

This method is used to output a rectangle to the printer. The currently selected pen
object will indicate the thickness and pattern of the outline of the shape, and the
currently selected brush object will be used to determine what pattern the shape will
be filled with. The parameters indicate location of the beginning and ending of the
shape and are in increments dictated by SetScale.

See the note at the beginning of this section regarding the return value.

Example:

object pntr;

if (!gRectangle(pntr, 10, 20, 30, 40))

abort report;

See also: NewPage, SetScale, Use, Line, Ellipse, RoundRect, Chord, Pie, Arc

[RoundRect]RoundRect::Printer

r = gRoundRect(pntr, yBeg, xBeg, yEnd, xEnd, eHt, eWth);

object pntr; /* printer object */

int yBeg; /* starting row */

int xBeg; /* starting column */

int yEnd; /* ending row */

int xEnd; /* ending column */

int eHt; /* corner ellipse height */

int eWth; /* corner ellipse width */

object r; /* printer object */

This method is used to output a rectangle with rounded corners to the printer. The
currently selected pen object will indicate the thickness and pattern of the outline of
the shape, and the currently selected brush object will be used to determine what pat-
tern the shape will be filled with. The parameters indicate location of the beginning
and ending of the shape and are in increments dictated by SetScale.

c© 1995-1996 Blake McBride

82 Dynace Windows Development System Manual

See the note at the beginning of this section regarding the return value.

Example:

object pntr;

if (!gRoundRect(pntr, 10, 20, 30, 40, 1, 1))

abort report;

See also: NewPage, SetScale, Use, Line, Rectangle, Ellipse, Chord, Pie, Arc

[SetScale]SetScale::Printer

r = gSetScale(pntr, ht, wth);

object pntr; /* printer object */

int ht; /* logical height */

int wth; /* logical width */

object r; /* printer object */

This method is used to set the logical scaling factor associated with an output device.
Each output page is divided up into ht evenly spaced row and wth evenly spaced
columns. This scaling factor will be used by all text and graphics output when
determining output size and location on the page.

Coordinates begin at the upper left hand of the page and are zero origin. The defaults
are set to 80 columns and 66 lines.

Example:

object pntr;

gSetScale(pntr, 132, 160);

See also: TextOut

[TextOut]TextOut::Printer

r = gTextOut(pntr, row, col, txt);

object pntr; /* printer object */

int row; /* output row */

int col; /* output column */

char *txt; /* text to output */

object r; /* printer object */

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 83

This method is used to output a line of text (txt) to the printer. row and col indicate
the position of the text and are in increments dictated by SetScale. Positions begin
in the upper left hand corner and have an index origin of 0.

The text will be printed in the currently selected font. Note that the actual printing
will not occur until the report is complete and the print object disposed.

See the note at the beginning of this section regarding the return value.

Example:

object pntr;

if (!gTextOut(pntr, 10, 20, "output text"))

abort report;

See also: NewPage, Printf, SetScale, LoadFont

[Use]Use::Printer

r = gUse(pntr, obj);

object pntr; /* printer object */

object obj; /* arbitrary object */

object r; /* the object passed */

This method is used as a general purpose mechanism to associated a number of object
types with a printer. obj may be a Font, Brush or Pen object. Those objects would
have normally been created via their associated classes and then may be associated
with a printer via this method.

Note that the same object should not be associated with more than one printer object.
The problem is that if one printer object is disposed, WDS would dispose of all the
objects associated with that printer and then the other printer would reference objects
which have been deleted. The way around this is to use the Copy method in order to
make a copy of an object prior to associating it with a new printer. This way there
would be two independent objects such that if one is deleted the other would still
exist.

The value returned is the object passed.

c© 1995-1996 Blake McBride

84 Dynace Windows Development System Manual

Example:

object myPntr, myOtherPntr, someFont;

someFont = vNew(ExternalFont, "Times New Roman", 12);

if (someFont) {

gUse(myPntr, someFont);

gUse(myOtherPntr, gCopy(someFont));

}

See also: LoadFont and the Brush and Pen classes.

4.6 Menus

The Menu class, although not used directly by an application, is used to house the common
functionality associated with the ExternalMenu and InternalMenu classes. Most of the
functionality of those classes is implemented and documented in this section.

External menus (those defined in resources) would be created and used via the
ExternalMenu class. Internal menus (those defined at runtime by the application code)
would be created and used via the InternalMenu and PopupMenu classes. Since both of
these classes are subclasses of the Menu class, they inherit most of their functionality from
it.

[Associate]Associate::Menu

r = mAssociate(menu, id, fun);

object menu; /* a menu object */

int id; /* menu item id */

long (*fun)(object); /* function to execute */

object r; /* the menu object */

This method is used to associate a function with a menu item such that if the user
selects the menu item, fun gets executed.

In the case of external menus, id is normally a macro created by the resource editor
while the programmer defines the menu and identifies a particular menu option.

fun is the application specific function which automatically gets executed whenever
the user selects the indicated option. fun has the following structure:

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 85

static long menu_option(object wind)

{

.

.

.

return 0L;

}

Where wind is the window object which the menu is attached to. The value returned
is what is returned by the window procedure associated with the window. This value
is normally 0 and is fully documented by the Windows documentation under the
WM_COMMAND message.

The value returned is the menu object passed.

Example:

object myMenu;

mAssociate(myMenu, ID_FILE_OPEN, menu_option);

See also: AddMenuOption::InternalMenu, AddMenuOption::PopupMenu

[DeepDispose]DeepDispose::Menu

r = gDeepDispose(menu);

object menu; /* a menu object */

object r; /* NULL */

This method is used to dispose of a menu object and all menu objects which were
pushed (via Push) into the same menu stack. It is not often needed because menus
associated with a window are automatically disposed of (via this method) when the
window is disposed.

If menu is an internal menu, all associated popup menus will also be disposed.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object myMenu;

myMenu = gDeepDispose(myMenu);

See also: Dispose, Push

c© 1995-1996 Blake McBride

86 Dynace Windows Development System Manual

[Dispose]Dispose::Menu

r = gDispose(menu);

object menu; /* a menu object */

object r; /* NULL */

This method is used to dispose of a menu object when it is no longer needed. It is not
often needed because menus associated with a window are automatically disposed of
(via DeepDispose) when the window is disposed.

If menu is an internal menu, all associated popup menus will also be disposed.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object myMenu;

myMenu = gDispose(myMenu);

See also: DeepDispose

[Handle]Handle::Menu

h = gHandle(menu);

object menu; /* menu object */

HANDLE h; /* Windows handle */

This method is used to obtain the Windows internal handle associated with a menu
object.

Note that this method may be used with most WDS objects in order to obtain the
internal handle that Windows normally associates with each type of object. See the
appropriate documentation.

Example:

object myMenu;

HANDLE h;

h = gHandle(myMenu);

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 87

[MenuFunction]MenuFunction::Menu

fun = mMenuFunction(menu, id);

object menu; /* a menu object */

int id; /* menu item id */

long (*fun)(object); /* function to execute */

This method is used to obtain the function which was associated with a menu item.

See also: Associate

[Pop]Pop::Menu

prev = gPop(top);

object top; /* top menu */

object prev; /* previous menu */

This method is used to dispose of menu top and gain access to the next menu in
menu top’s last in, first out list. It is mainly used by the Window class in order to
support the ability to change a menu and later return to a previous menu. The value
returned is the next menu in the stack.

Example:

object myMenu, subMenu;

HANDLE h;

subMenu = gPop(myMenu);

See also: Push, Use::Window, PopMenu::Window

[Push]Push::Menu

r = gPush(top, psh);

object top; /* top menu */

object psh; /* pushed menu */

object r; /* top menu */

This method is used to push menu (psh) into a last in, first out stack accessible
through menu top. It is mainly used by the Window class in order to support the
ability to change a menu and later return to a previous menu. The value returned is
the top menu passed.

c© 1995-1996 Blake McBride

88 Dynace Windows Development System Manual

Example:

object myMenu, subMenu;

HANDLE h;

h = gPush(myMenu, subMenu);

See also: Pop, Use::Window, PopMenu::Window

[SetMode]SetMode::Menu

r = mSetMode(menu, id, mode);

object menu; /* menu */

unsigned id; /* menu item */

unsigned mode; /* item mode */

object r; /* menu */

This method is used to set the mode associated with a menu item. This mode specifies
whether the menu is enabled, disabled or grayed.

In the case of external menus, id is normally a macro created by the resource editor
while the programmer defines the menu and identifies a particular menu option. In the
case of internal menu’s, id is the number returned by AddMenuOption::InternalMenu
or AddMenuOption::PopupMenu.

mode is a Windows defined macro and may be one of the following:

MF_ENABLED to enable the menu item

MF_DISABLED to disable the menu item

MF_GRAYED to gray the menu option

The value returned is the menu passed.

Example:

object myMenu;

mSetMode(myMenu, ID_FILE_OPEN, MF_DISABLED);

See also: AddMenuOption::InternalMenu, AddMenuOption::PopupMenu

4.6.1 External Menus

The ExternalMenu class is used to access menus which were defined using the resource
editor. Since this class is a subclass of Menu, all of Menu’s functionality is accessible through
instance of this class. Therefore, see the Menu class for additional functionality.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 89

[Load]Load::ExternalMenu

menu = mLoad(ExternalMenu, id);

unsigned id; /* menu id */

object menu; /* menu */

This method is used to create a new menu object representing a menu defined with
the resource editor.

id is normally a macro created by the resource editor which identifies a particular
menu.

The value returned is a new object representing the menu or NULL if the menu iden-
tified is not found.

Example:

object myMenu;

myMenu = mLoad(ExternalMenu, MY_MENU);

See also: LoadStr, LoadMenu::Window, LoadMenuStr::Window

[LoadStr]LoadStr::ExternalMenu

menu = gLoadStr(ExternalMenu, id);

char *id; /* menu id */

object menu; /* menu */

This method is used to create a new menu object representing a menu defined with
the resource editor.

id is a string which names the desired menu. This name is defined by the resource
editor and identifies a particular menu.

The value returned is a new object representing the menu or NULL if the menu iden-
tified is not found.

Example:

object myMenu;

myMenu = gLoadStr(ExternalMenu, "mymenu");

See also: Load, LoadMenu::Window, LoadMenuStr::Window

c© 1995-1996 Blake McBride

90 Dynace Windows Development System Manual

4.6.2 Internal Menus

The InternalMenu class is used to enable an application to create menus on the fly –
without the need to pre-specify the menu’s structure with the resource editor. Since this
class is a subclass of Menu, all of Menu’s functionality is accessible through instance of this
class. Therefore, see the Menu class for additional functionality.

[AddMenuOption]AddMenuOption::InternalMenu

id = gAddMenuOption(mnu, ttl, fun)

object menu; /* menu */

char *ttl; /* title */

long (*fun)(); /* function */

int id; /* item id */

This method is used to append a new option to internal menu object mnu and associate
it to an application specific function (fun). Once this is done, if the user selects the
new menu option the function fun will be executed.

ttl represents the character string which will be displayed in the menu. ttl may also
contain an embedded ampersand (&) character. This causes the character following
the ampersand to be underlined. It also causes the following character to be the Alt
key selection the user can use to quickly select a menu option.

fun is the function which will be executed when the user selects the menu option and
has the following form:

long fun(object wind)

{

.

.

.

return 0L;

}

The function executed (fun) is passed the window object and returns a long. The
return value is documented in the Windows documentation under the message named
WM_COMMAND. It should normally be 0L.

This method returns a unique WDS generated id which identifies this particular menu
option and may be used to control the status of the option.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 91

Example:

static long file_message(object wind)

{

gMessage(wind, "File_Message");

return 0L;

}

.

.

mnu = vNew(InternalMenu);

gAddMenuOption(mnu, "&File", file_message);

See also: AddPopupMenu

[AddPopupMenu]AddPopupMenu::InternalMenu

id = gAddPopupMenu(mnu, ttl, pm)

object mnu; /* menu */

char *ttl; /* title */

object pm; /* Popup menu */

object r; /* menu */

This method is used to append a new option to menu object mnu and associate it to
a popup menu. Once this is done, if the user selects the new menu option the popup
menu will be displayed.

ttl represents the character string which will be displayed in the menu. ttl may also
contain an embedded ampersand (&) character. This causes the character following
the ampersand to be underlined. It also causes the following character to be the Alt
key selection the user can use to quickly select a menu option.

pm is a popup menu object created with the PopupMenu class.

This method returns mnu.

Example:

object mnu, pm;

mnu = vNew(InternalMenu);

pm = vNew(PopupMenu, mnu);

gAddPopupMenu(mnu, "&File", pm);

See also: AddMenuOption, New::PopupMenu

c© 1995-1996 Blake McBride

92 Dynace Windows Development System Manual

[New]New::InternalMenu

menu = vNew(InternalMenu);

object menu; /* menu */

This method is used to create a new internal menu. An internal menu is one which is
not pre-specified with the resource editor. It may therefore be structured at runtime.

The object returned is a new internal menu object with no items associated with it.

Example:

object myMenu;

myMenu = vNew(InternalMenu);

See also: AddMenuOption, AddMenu, Use::Window, LoadMenu::Window

4.7 Popup Menus

The PopupMenu class is used in conjunction with the InternalMenu class in order to provide
a nested menu structure. Nesting of popup menus is supported to arbitrary levels.

[AddMenuOption]AddMenuOption::PopupMenu

id = gAddMenuOption(mnu, ttl, fun)

object menu; /* menu */

char *ttl; /* title */

long (*fun)(); /* function */

int id; /* item id */

This method works exactly like AddMenuOption::InternalMenu. See that description
for full documentation.

See also: AddPopupMenu, AddSeparator

[AddPopupMenu]AddPopupMenu::PopupMenu

id = gAddPopupMenu(mnu, ttl, pm)

object mnu; /* menu */

char *ttl; /* title */

object pm; /* Popup menu */

object r; /* menu */

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 93

mnu is the popup menu which is to act as the parent of pm and may be arbitrarily
nested.

This method is the same as AddPopupMenu::InternalMenu. See that method for
complete documentation.

See also: AddMenuOption, AddSeparator

[AddSeparator]AddSeparator::PopupMenu

r = gAddSeparator(mnu)

object mnu; /* menu */

object r; /* menu */

This method is used to append a horizontal bar to the end of a popup menu. Any
menu items added subsequently will appear after the horizontal separator.

The menu object passed is returned.

Example:

gAddSeparator(pm);

See also: AddMenuOption

[Dispose]Dispose::PopupMenu

r = gDispose(menu);

object menu; /* a menu object */

object r; /* NULL */

This method is used to dispose of a menu object when it is no longer needed. It is not
often needed because popup menus associated with other menus are automatically
disposed of (via DeepDispose) when the top level menu is disposed.

This class also provides a DeepDispose which performs the same function.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object myMenu;

myMenu = gDispose(myMenu);

c© 1995-1996 Blake McBride

94 Dynace Windows Development System Manual

See also: DeepDispose::Menu

[Handle]Handle::PopupMenu

h = gHandle(menu);

object menu; /* menu object */

HANDLE h; /* Windows handle */

This method is used to obtain the Windows internal handle associated with a popup
menu object.

Note that this method may be used with most WDS objects in order to obtain the
internal handle that Windows normally associates with each type of object. See the
appropriate documentation.

Example:

object myMenu;

HANDLE h;

h = gHandle(myMenu);

[MenuFunction]MenuFunction::PopupMenu

fun = mMenuFunction(menu, id);

object menu; /* a menu object */

int id; /* menu item id */

long (*fun)(object); /* function to execute */

This method is used to obtain the function which was associated with a menu item.

See also: AddMenuOption

[New]New::PopupMenu

pm = vNew(PopupMenu, tm);

object tm; /* top menu */

object pm; /* popup menu */

This method is used to create a new popup menu. A popup menu is one which pops
up or appears when a user selects an associated menu option. Popup menus are
used in conjunction with internal menus in order to create arbitrarily complex menu
structures.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 95

tm is the top menu object. It must be an InternalMenu, regardless of where the new
popup menu will be nested.

The object returned represents the new popup menu created and may be used to add
items to that menu.

Example:

object myMenu, pm;

myMenu = vNew(InternalMenu);

pm = vNew(PopupMenu, myMenu);

gAddPopupMenu(myMenu, "&File", pm);

See also: AddMenuOption, AddPopupMenu, AddSeparator,

AddPopupMenu::InternalMenu

4.8 Dialogs

The Dialog class implements all the functionality which is common to the ModalDialog

and ModelessDialog classes, and although this class is not used directly, most of their
functionality is documented in this section.

4.8.1 Standard Dialog Method Arguments

Since all dialog instance methods have the dialog object as the first argument (referred to
as dlg), this argument will not be described each time. It always refers to the dialog object
which you wish to perform the desired operation on.

Many of the methods associated with this class take an argument identified as id. This
is a macro defined by the programmer via the resource editor when the dialog is being
defined and is used to uniquely identify a particular control within the dialog. Due to the
fact that this argument has the same meaning for every method which uses it, it will not
be defined each time.

The variable ctl will always refer to a control object. Each control object represents
a unique control within a dialog. Each control object will be an instance of one of the
subclasses of the Control class (such as TextControl or NumericControl).

4.8.2 Dialog Methods

[AddControl]AddControl::Dialog

ctl = mAddControl(dlg, ctlClass, id);

object dlg; /* a dialog object */

object ctlClass; /* class of control */

unsigned id; /* control id */

object ctl; /* control object */

c© 1995-1996 Blake McBride

96 Dynace Windows Development System Manual

This method is used to create a new control object and associate it to a control defined
in the dialog. ctlClass must be literally one of the subclasses of the Control class
(such as TextControl, CheckBox, RadioButton, etc). See the class hierarchy for a
complete list.

id identifies which control within dialog dlg to associate the new control object with.

The value returned (ctl) is the new control object created and will be an instance
of the class indicated by the ctlClass argument. This object can be configured
and queried via the protocol defined by its class. See that section for available op-
tions. Setting various options associated with this object will control default values
associated with the control and how this control functions within the dialog.

Example:

object dlg, ctl;

ctl = mAddControl(dlg, TextControl, PERSONS_NAME);

See also: GetControl

[AddDlgHandlerAfter]AddDlgHandlerAfter::Dialog

r = gAddDlgHandlerAfter(dlg, msg, func);

object dlg; /* a dialog object */

unsigned msg; /* message */

BOOL (*func)(); /* function pointer */

object r; /* the dialog obj */

This method is used to associate function func with Windows dialog message msg for
dialog dlg. Whenever dialog dlg receives message msg, func will be called.

dlg is the dialog object who’s messages you wish to process. msg is the particular
message you wish to trap. These messages are fully documented in the Windows
documentation in the Messages section. They normally begin with WM_.

func is the function which gets called whenever the specified message gets received
and takes the following form:

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 97

BOOL func(object dlg,

HWND hdlg,

UINT mMsg,

WPARAM wParam,

LPARAM lParam)

{

.

.

.

return FALSE; /* or whatever is appropriate */

}

Where dlg is the dialog being sent the message. The remaining arguments and return
value is fully documented in the Windows documentation under the DialogProc

function and the Windows Messages documentation.

WDS keeps a list of functions associated with each message associated with each
dialog. When a particular message is received the appropriate list of handler functions
gets executed sequentially. AddDlgHandlerAfter appends the new function to the end
of this list, and AddDlgHandlerBefore adds the new function to the beginning of the
list.

Windows will only see the return value of the last message handler executed.

Example:

int hSize, vSize;

static BOOL process_wm_size(object dlg,

HWND hwnd,

UINT mMsg,

WPARAM wParam,

LPARAM lParam)

{

hSize = LOWORD(lParam);

vSize = HIWORD(lParam);

return 0L;

}

.

.

gAddDlgHandlerAfter(dlg, (unsigned) WM_SIZE,

process_wm_size);

.

.

See also: AddDlgHandlerBefore

c© 1995-1996 Blake McBride

98 Dynace Windows Development System Manual

[AddDlgHandlerBefore]AddDlgHandlerBefore::Dialog

r = gAddDlgHandlerBefore(dlg, msg, func);

object dlg; /* a dialog object */

unsigned msg; /* message */

BOOL (*func)(); /* function pointer */

object r; /* the dialog obj */

This function is fully documented under AddDlgHandlerAfter.

See also: AddDlgHandlerAfter

[AutoDispose]AutoDispose::Dialog

pflg = gAutoDispose(dlg, flg);

object dlg; /* a dialog object */

int flg; /* desired mode */

int pflg; /* previous mode set */

This method is used to control the auto disposal facility associated with a given dialog.
The default is disabled for modal dialogs and enabled for modeless dialogs.

If enabled, the auto dispose feature will cause the dialog object (dlg) to be auto-
matically disposed of whenever the user accepts or aborts the dialog. If disabled,
the application may continue to use the object (for querying control values for exam-
ple) after the dialog has been terminated. If the auto dispose feature is disabled the
application must explicitly dispose of the object when it is no longer needed.

Note that if the auto dispose feature is used, the gCompletionFunction method
may be used to access the control values immediately prior to the object’s automatic
disposal.

Set flg to 1 to enable the feature and 0 to disable it. The previous state will be
returned.

Example:

object dlg;

gAutoDispose(dlg, 1);

See also: CompletionFunction, Perform, SetResult

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 99

[BackBrush]BackBrush::Dialog

r = gBackBrush(dlg, brsh);

object dlg; /* a dialog object */

object brsh; /* brush object */

object r; /* dlg */

This method is used to set the brush object which is used for the background of the
dialog. Any previously associated brush object will be disposed. This brush object
will also be automatically disposed when the dialog is disposed.

The dialog passed is returned.

Example:

object dlg;

gBackBrush(dlg, vNew(SolidBrush, 0, 255, 0));

See also: TextBrush, SetBackBrush::Application and the Brush classes

[CompletionFunction]CompletionFunction::Dialog

r = gCompletionFunction(dlg, fun);

object dlg; /* dialog object */

int (*fun)(); /* completion function */

object r; /* dialog object */

This method is used to associated a C function with a dialog such that when the user
accepts or aborts the dialog, function fun will get executed by WDS. The function
will get executed prior to any automatic disposal of the dialog object.

The completion function facility is best used in conjunction with modeless dialogs
and the auto dispose facility in order to process control values when the user accepts
the dialog and prior to the automatic disposal of the dialog object.

The format of fun is as follows:

r = fun(dlg, res);

object dlg; /* the dialog object */

int res; /* result status of the dialog */

int r; /* result for gPerform */

c© 1995-1996 Blake McBride

100 Dynace Windows Development System Manual

Where res will be TRUE if the user accepted the dialog or FALSE if the user canceled
the dialog. r is the value which will become the result of the dialog which is returned
by gPerform (if it was a modal dialog). r will normally be res.

Example:

static int fun(object dlg, int res)

{

.

.

return res;

}

gCompletionFunction(dlg, fun);

See also: AutoDispose, Perform, SetTag, SetResult

[CtlDoubleValue]CtlDoubleValue::Dialog

val = mCtlDoubleValue(dlg, id);

object dlg; /* a dialog object */

unsigned id; /* control id */

double val; /* control value */

This method is used to gain access to the value associated with a particular control
as a C double. For example, if the control was a numeric control and the user entered
“3.141”, then this method would return a double “3.141”.

Example:

object dlg;

double val;

val = mCtlDoubleValue(dlg, PI_VALUE);

See also: CtlStringValue, CtlShortValue, ... CtlValue

[CtlLongValue]CtlLongValue::Dialog

val = mCtlLongValue(dlg, id);

object dlg; /* a dialog object */

unsigned id; /* control id */

long val; /* control value */

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 101

This method is used to gain access to the value associated with a particular control
as a C long. For example, if the control was a numeric control and the user entered
“6”, then this method would return a long “6”.

In the case of date controls, the value returned will be in the form YYYYMMDD.
For example November 24, 1956 would be 19561124.

Example:

object dlg;

long val;

val = mCtlLongValue(dlg, PERSONS_AGE);

See also: CtlStringValue, CtlShortValue, ... CtlValue

[CtlShortValue]CtlShortValue::Dialog

val = mCtlShortValue(dlg, id);

object dlg; /* a dialog object */

unsigned id; /* control id */

short val; /* control value */

This method is used to gain access to the value associated with a particular control
as a C short. For example, if the control was a numeric control and the user entered
“6”, then this method would return a short “6”.

In the case of a list box or combo box the value returned will be in terms of an ordinal
value. This value returned is a zero based index from top to bottom indicating the
selection made by the user. If no selection was made negative value will be returned.

In the case of check boxes and radio buttons this method will return 0 if the button
is not selected, 1 if the button is selected, and 2 if the button is grayed.

In the case of scroll bars, this method will return a short value between the minimum
and maximum set for the control which indicates where the control was set to.

mCtlLongValue should be used for date controls.

Example:

object dlg;

short val;

val = mCtlShortValue(dlg, PERSONS_AGE);

See also: CtlStringValue, CtlLongValue, ... CtlValue

c© 1995-1996 Blake McBride

102 Dynace Windows Development System Manual

[CtlStringValue]CtlStringValue::Dialog

val = mCtlStringValue(dlg, id);

object dlg; /* a dialog object */

unsigned id; /* control id */

char *val; /* control value */

This method is used to gain access to the value associated with a particular control
as a C character string. For example, if the control was a text control and the user
entered “Miami”, then this method would return a pointer to the C string “Miami”.

If the control being accessed is a list box or combo box, the value returned will be
a string representation of the text associated with the choice made by the user. See
CtlShortValue or IndexValue to get an ordinal value for this control type.

The character pointer returned will not be valid once the dialog or control has been
disposed. Therefore, the value should be kept by some other means if it is desired
past the life of the dialog.

Example:

object dlg;

char *val;

val = mCtlStringValue(dlg, PERSONS_NAME);

See also: CtlShortValue, CtlLongValue, ... CtlValue

[CtlUnsignedShortValue]CtlUnsignedShortValue::Dialog

val = mCtlUnsignedShortValue(dlg, id);

object dlg; /* a dialog object */

unsigned id; /* control id */

unsigned short val; /* control value */

This method is used to gain access to the value associated with a particular control
as a C unsigned short. For example, if the control was a numeric control and the user
entered “6”, then this method would return a unsigned short “6”.

mCtlLongValue should be used for date controls.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 103

Example:

object dlg;

unsigned short val;

val = mCtlUnsignedShortValue(dlg, PERSONS_AGE);

See also: CtlStringValue, CtlLongValue, ... CtlValue

[CtlValue]CtlValue::Dialog

val = mCtlValue(dlg, id);

object dlg; /* a dialog object */

unsigned id; /* control id */

object val; /* control value */

This method is used to gain access to the value associated with a particular control
as a Dynace object. For example, if the control was a text control and user entered
“Miami”, then this method would return a Dynace string object (not a normal C
string) which represents the value typed in. This returned value may be used and
accessed like any other Dynace object using the appropriate interface mechanism.

If the control being accessed is a list box or combo box, the value returned will
be a representation of the text associated with the choice made by the user. See
IndexValue or CtlShortValue to get a numeric representation for this control type.

The object returned will be automatically disposed when the dialog is disposed, there-
fore, a copy (via gCopy) should be made of it if its existence is required subsequent
to the dialog’s disposal.

WDS also provides several methods to obtain normal C data types directly.

Example:

object dlg, val;

val = mCtlValue(dlg, PERSONS_NAME);

See also: CtlStringValue, CtlShortValue, CtlLongValue, ...

[DeepDispose]DeepDispose::Dialog

This method performs the same function as Dispose. See that method for details.

c© 1995-1996 Blake McBride

104 Dynace Windows Development System Manual

[Dispose]Dispose::Dialog

r = gDispose(dlg);

object dlg; /* a dialog object */

object r; /* NULL */

This method is used to remove and dispose of a dialog object when it is no longer
needed. This method should be called on all dialogs when they are no longer needed.
In addition to disposing of the dialog, this method will also dispose of all the control
objects associated with the dialog.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object dlg;

dlg = gDispose(dlg);

See also: AutoDispose

[GetBackBrush]GetBackBrush::Dialog

brsh = gGetBackBrush(dlg);

object dlg; /* dialog object */

object brsh; /* brush object */

This method is used to obtain the background brush object which has been associated
with the dialog. If no specific background brush was associated with the dialog this
method will return the application default background brush, which is what the dialog
uses when no specific brush is specified.

Example:

object dlg, brsh;

brsh = gGetBackBrush(dlg);

See also: BackBrush, GetTextBrush, GetBackBrush::Application

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 105

[GetControl]GetControl::Dialog

ctl = mGetControl(dlg, id);

object dlg; /* a dialog object */

unsigned id; /* control id */

object ctl; /* control object */

This method is used to gain access to a control object which has been previously
associated with a particular control via its associated control id. The control object
is returned.

Example:

object dlg, ctl;

ctl = mGetControl(dlg, PERSONS_NAME);

See also: AddControl

[GetParent]GetParent::Dialog

prnt = gGetParent(dlg);

object dlg; /* dialog object */

object prnt; /* parent window object */

This method is used to obtain the parent window object associated with dialog dlg.
This parent window would have established when the dialog object was created.

Example:

object dlg, parentWind;

parentWind = gGetParent(dlg);

See also: NewDialog::ModalDialog, NewDialog::ModelessDialog

[GetTag]GetTag::Dialog

r = gGetTag(dlg);

object dlg; /* dialog object */

object r; /* tag */

c© 1995-1996 Blake McBride

106 Dynace Windows Development System Manual

This method is used to obtain a Dynace object which has been associated with a
dialog via SetTag. The value return is the object which has been associated with
the dialog object dlg. If there is no object associated with the dialog, NULL will be
returned.

Example:

object dlg, someObj;

someObj = gGetTag(dlg);

See also: SetTag, SetTag::Window

[GetTextBrush]GetTextBrush::Dialog

brsh = gGetTextBrush(dlg);

object dlg; /* dialog object */

object brsh; /* brush object */

This method is used to obtain the text brush object which has been associated with
the dialog. If no specific text brush was associated with the dialog this method will
return the application default text brush, which is what the dialog uses when no
specific brush is specified.

Example:

object dlg, brsh;

brsh = gGetTextBrush(dlg);

See also: TextBrush, GetBackBrush, GetTextBrush::Application

[Handle]Handle::Dialog

h = gHandle(dlg);

object dlg; /* dialog object */

HANDLE h; /* Windows handle */

This method is used to obtain the Windows internal handle associated with a dialog
object. It will only return a valid handle while the dialog is being performed via
gPerform. NULL will be returned otherwise.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 107

Note that this method may be used with most WDS objects in order to obtain the
internal handle that Windows normally associates with each type of object. See the
appropriate documentation.

Example:

object dlg;

HANDLE h;

h = gHandle(dlg);

[IndexValue]IndexValue::Dialog

val = mIndexValue(dlg, id);

object dlg; /* a dialog object */

unsigned id; /* control id */

object val; /* control value */

This method is used to gain access to a Dynace object (as opposed to a normal C
integer) representing the value associated with a list box or combo box in terms of an
ordinal value. This value returned is a zero based index from top to bottom indicating
the selection made by the user. If no selection was made the object will represent a
negative value. This returned value may be used and accessed like any other Dynace
object using the appropriate interface mechanisms.

The object returned will be automatically disposed when the dialog is disposed, there-
fore, a copy (via gCopy) should be made of it if its existence is required subsequent
to the dialog’s disposal.

WDS also provides several methods to obtain normal C data types directly.

Example:

object dlg, val;

val = mIndexValue(dlg, SOME_LISTBOX);

See also: CtlShortValue, CtlValue

[InDialog]InDialog::Dialog

flg = gInDialog(dlg);

object dlg; /* a dialog object */

int flg; /* in dialog flag */

c© 1995-1996 Blake McBride

108 Dynace Windows Development System Manual

This method is used to determine whether a given dialog is currently being “per-
formed” via gPerform. Prior and subsequent to performing a dialog this method will
return 0. A 1 will be returned if the dialog is currently being performed.

Example:

object dlg;

int flg;

flg = gInDialog(dlg);

See also: Perform

[Message]Message::Dialog

r = gMessage(dlg, msg);

object dlg; /* dialog object */

char *msg; /* message */

object r; /* dialog object */

This method is used to open up a temporary informational window. The window will
contain the message given by msg and the user must acknowledge the window prior
to continuing by hitting an OK button.

This method may only be used either while the dialog is being performed or at any
time if it has an associated parent window.

The value returned is the dialog passed.

Example:

object dlg;

gMessage(dlg, "Press OK to continue.");

See also: MessageWithTopic

[MessageWithTopic]MessageWithTopic::Dialog

r = gMessageWithTopic(dlg, msg, tpc);

object dlg; /* dialog object */

char *msg; /* message */

char *tpc; /* help topic */

object r; /* dialog object */

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 109

This method is used to open up a temporary informational dialog. The dialog will
contain the message given by msg and the user must acknowledge the dialog prior to
continuing by hitting an OK button.

If the user hits the F1 key while presented with the message, the help topic identified
by tpc will get displayed via the Windows help system.

This method may only be used either while the dialog is being performed or at any
time if it has an associated parent window.

The value returned is the dialog passed.

Example:

object dlg;

gMessageWithTopic(dlg, "Press OK to continue.", "mytopic");

See also: Message and the HelpSystem class.

[Perform]Perform::Dialog

r = gPerform(dlg);

object dlg; /* a dialog object */

int r; /* result */

Once a dialog is created and fully specified, this method is used to actually display
the dialog and allow the user to interact with it. The dialog will remain active until
the user pushes the push buttons with the label IDOK or IDCANCEL.

What occurs after calling gPerform depends on whether the dialog was a modal or
modeless dialog.

Control initial values should be set prior to calling gPerform.

MODAL DIALOGS

If the dialog being performed is a modal, then once gPerform is evoked the user will
be able to interact with the dialog and gPerform will not return until the user either
accepts or aborts the entire dialog. This, in effect, will prevent the user from switching
to any other window or dialog within the application until the dialog is completed.

Finally, the value returned by gPerform will be the Windows constant FALSE if the
user canceled the dialog, the Windows constant TRUE if the user accepted the dialog,
or the value returned by any completion function which was attached to the dialog
(via CompletionFunction).

Once gPerform returns, the dialog object may be queried in order to obtain the final
values associated with each control.

c© 1995-1996 Blake McBride

110 Dynace Windows Development System Manual

Unless the auto dispose feature is manually set for a modal dialog, the dialog object
is not automatically disposed and must be when no longer needed.

MODELESS DIALOGS

Modeless dialogs operate different from modal dialogs. When gPerform is evoked
on a modeless dialog, gPerform returns immediately with a 0 value. At that point
the user is presented with the dialog and allowed to edit it. During that time your
program would typically return to the menu and wait for further user selections. The
user may continue with the current dialog, abort it, or switch to another window
within the application with the ability to return at any point. All the user interaction
is automatically handled by Windows and WDS.

Since the application code has gone on about its business after a call to gPerform two
things are left to be completed whenever the user finally accepts or aborts the dialog.
First, the application will typically want to do something with the data the user has
entered on the dialog. And second, the dialog object will need to be disposed when
it’s no longer needed.

When using modeless dialogs the programmer normally attaches a completion func-
tion to the dialog via gCompletionFunction. What this does is cause the completion
function to be executed whenever the user accepts or aborts the dialog. This applica-
tion specific function can be used to perform the final processing of the dialog’s data.
See gCompletionFunction for complete details.

By default, the auto dispose flag associated with modeless dialogs is normally enabled.
This causes WDS to automatically dispose of a dialog object and all associated con-
trols immediately subsequent to executing the completion function. This way every-
thing is cleaned up automatically. This feature may be disabled via gAutoDispose,
in which case the application must be sure to dispose of the unneeded object.

Example:

object dlg;

int r;

r = gPerform(dlg);

See also: CompletionFunction, AutoDispose

[SetResult]SetResult::Dialog

r = gSetResult(dlg, obj);

object dlg; /* a dialog object */

object obj; /* result object */

object r; /* dlg */

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 111

This method is used to associated a Dynace short integer object with a dialog such
that when the dialog is completed or canceled by the user, the associated object will
be set to the dialog’s result value. This feature is most often needed in conjunction
with modeless dialogs and the auto dispose feature. It can be used to find out what
happened to a dialog subsequent to the dialog object being disposed.

The object associated with the dialog will never be disposed by WDS and must be
manually disposed when it is no longer needed.

Example:

object dlg, obj;

gSetResult(dlg, obj = gNewWithInt(ShortInteger, -1));

See also: AutoDispose, Perform, SetTag

[SetTag]SetTag::Dialog

r = gSetTag(dlg, tag);

object dlg; /* a dialog object */

object tag; /* tag */

object r; /* previous tag */

This method is used to associated an arbitrary Dynace object with a dialog object.
This may later be retrieved via the GetTag method. Since WDS passes around the
dialog object to all Dialog methods this mechanism may be used to pass additional
information with the dialog. And since Dynace treats all objects in a uniform manner,
this information attached to the dialog may be arbitrarily complex.

WDS does not dispose of the tag when the dialog object is disposed. This method
returns any previous object associated with the dialog or NULL.

Example:

object dlg;

gSetTag(dlg, gNewWithInt(ShortInteger, 17));

See also: GetTag, SetTag::Window

c© 1995-1996 Blake McBride

112 Dynace Windows Development System Manual

[SetTopic]SetTopic::Dialog

pt = gSetTopic(dlg, tpc);

object dlg; /* dialog object */

char *tpc; /* help topic */

char *pt; /* previous help topic */

This method is used to associate help text with dialog dlg. The help text is defined
using the Windows help system and labeled with the topic indicated by tpc. Then,
if the user hits the F1 key while in the dialog, WDS will automatically bring up the
Windows help system and find the indicated topic.

WDS also supports window and control specific topics. See the appropriate sections.

This method returns any previous topic associated with the dialog.

Example:

object dlg;

gSetTopic(dlg, "myDialogHelp");

See also: The HelpSystem class and SetTopic::Control

[TextBrush]TextBrush::Dialog

r = gTextBrush(dlg, brsh);

object dlg; /* a dialog object */

object brsh; /* brush object */

object r; /* dlg */

This method is used to set the brush object which is used for foreground text which
is displayed. Any previously associated brush object will be disposed. This brush
object will also be automatically disposed when the dialog is disposed.

The dialog passed is returned.

Example:

object dlg;

gTextBrush(dlg, vNew(SolidBrush, 255, 0, 0));

See also: BackBrush, SetTextBrush::Application and the Brush classes

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 113

4.8.3 Modal Dialogs

Modal dialogs are created with the methods described in this section. However, since
the ModalDialog class is a subclass of Dialog, and the Dialog class implements all the
functionality common to both the ModalDialog and ModelessDialog classes, the majority
of the functionality is inherited from and documented in the Dialog class. Therefore, see
the Dialog class for documentation on additional functionality available to this class.

[NewDialog]NewDialog::ModalDialog

dlg = mNewDialog(ModalDialog, id, wnd);

unsigned id; /* dialog id */

object wnd; /* parent window */

object dlg; /* dialog object */

This method is used to create a new modal dialog. The dialog must have been
previously laid out using the resource editor. The id is a macro generated by the
resource editor while the programmer defines the dialog. This id uniquely identifies
a particular dialog.

wnd allows the specification of the parent window object associated with the new
dialog. This is an optional parameter and may be NULL if it not desired. If you do
specify a parent window, the dialog will iconize when the window is iconized and will
be disposed if the window is disposed.

The object returned represents the new dialog created and may be used to further
control the dialog.

Example:

object wind, dlg;

dlg = mNewDialog(ModalDialog, MY_DIALOG, wind);

See also: NewDialogStr, Perform::Dialog, NewDialog::ModelessDialog

[NewDialogStr]NewDialogStr::ModalDialog

dlg = gNewDialogStr(ModalDialog, id, wnd);

char *id; /* dialog id */

object wnd; /* parent window */

object dlg; /* dialog object */

This method is used to create a new modal dialog. The dialog must have been
previously laid out using the resource editor. The id is the string name associated
with the dialog. This id uniquely identifies a particular dialog.

c© 1995-1996 Blake McBride

114 Dynace Windows Development System Manual

wnd allows the specification of the parent window object associated with the new
dialog. This is an optional parameter and may be NULL if it not desired. If you do
specify a parent window, the dialog will iconize when the window is iconized and will
be disposed if the window is disposed.

The object returned represents the new dialog created and may be used to further
control the dialog.

Example:

object wind, dlg;

dlg = gNewDialogStr(ModalDialog, "mydialog", wind);

See also: NewDialog, Perform::Dialog, NewDialogStr::ModelessDialog

4.8.4 Modeless Dialogs

Modeless dialogs are created with the methods described in this section. However, since
the ModelessDialog class is a subclass of Dialog, and the Dialog class implements all the
functionality common to both the ModalDialog and ModelessDialog classes, the majority
of the functionality is inherited from and documented in the Dialog class. Therefore, see
the Dialog class for documentation on additional functionality available to this class.

[NewDialog]NewDialog::ModelessDialog

dlg = mNewDialog(ModelessDialog, id, wnd);

unsigned id; /* dialog id */

object wnd; /* parent window */

object dlg; /* dialog object */

This method is used to create a new modeless dialog. The dialog must have been
previously laid out using the resource editor. The id is a macro generated by the
resource editor while the programmer defines the dialog. This id uniquely identifies
a particular dialog.

wnd allows the specification of the parent window object associated with the new
dialog. This is an optional parameter and may be NULL if it not desired. If you do
specify a parent window, the dialog will iconize when the window is iconized and will
be disposed if the window is disposed.

When a new modeless dialog is created, its auto dispose mode is enabled. This
means that, unless disabled, the object representing the dialog will be automatically
disposed when the user closes the window. This is done due to the independent nature
of modeless dialogs and the need to be sure that object no longer needed are disposed.
Note that the programmer may specify a function which gets executed prior to the
disposal of a modeless dialog in order to capture any data.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 115

The object returned represents the new dialog created and may be used to further
control the dialog.

Example:

object wind, dlg;

dlg = mNewDialog(ModelessDialog, MY_DIALOG, wind);

See also: NewDialogStr, Perform::Dialog, NewDialog::ModalDialog,

CompletionFunction::Dialog, AutoDispose::Dialog

[NewDialogStr]NewDialogStr::ModelessDialog

dlg = gNewDialogStr(ModlessDialog, id, wnd);

char *id; /* dialog id */

object wnd; /* parent window */

object dlg; /* dialog object */

This method is used to create a new modeless dialog. The dialog must have been
previously laid out using the resource editor. The id is the string name associated
with the dialog. This id uniquely identifies a particular dialog.

wnd allows the specification of the parent window object associated with the new
dialog. This is an optional parameter and may be NULL if it not desired. If you do
specify a parent window, the dialog will iconize when the window is iconized and will
be disposed if the window is disposed.

When a new modeless dialog is created, its auto dispose mode is enabled. This
means that, unless disabled, the object representing the dialog will be automatically
disposed when the user closes the window. This is done due to the independent nature
of modeless dialogs and the need to be sure that object no longer needed are disposed.
Note that the programmer may specify a function which gets executed prior to the
disposal of a modeless dialog in order to capture any data.

The object returned represents the new dialog created and may be used to further
control the dialog.

Example:

object wind, dlg;

dlg = gNewDialogStr(ModelessDialog, "mydialog", wind);

See also: NewDialog, Perform::Dialog, NewDialogStr::ModalDialog,

CompletionFunction::Dialog, AutoDispose::Dialog

c© 1995-1996 Blake McBride

116 Dynace Windows Development System Manual

4.9 Controls

The Control class is never used directly. It is used to group functionality common to all
the control types which are all subclasses of this class. Therefore, this section documents
all the methods which are accessible to all subclasses of this class.

Control instances are normally created via AddControl::Dialog and may be subse-
quently accessed via GetControl::Dialog.

4.9.1 Standard Control Method Arguments

Since all control instance methods have the control object as their first argument (referred to
as ctl), this argument will not be described each time. It always refers to the control object
which you wish to perform the desired operation on. Each control object will be an instance
of one of the subclasses of the Control class (such as TextControl or NumericControl).

Many of the methods associated with this class take an argument identified as id. This
is a macro defined by the programmer via the resource editor when the dialog is being
defined and is used to uniquely identify a particular control within the dialog. Due to the
fact that this argument has the same meaning for every method which uses it, it will not
be defined each time.

4.9.2 Control Methods

[AddHandlerAfter]AddHandlerAfter::Control

r = gAddHandlerAfter(ctl, msg, func);

object ctl; /* a control object */

unsigned msg; /* message */

long (*func)(); /* function pointer */

object r; /* the control obj */

This method is used to associate function func with Windows control message msg

for control ctl. Whenever control ctl receives message msg, func will be called.

ctl is the control object who’s messages you wish to process. msg is the particular
message you wish to trap. These messages are fully documented in the Windows
documentation in the Messages section. They normally begin with WM_.

func is the function which gets called whenever the specified message gets received
and takes the following form:

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 117

long func(object ctl,

HWND hwnd,

UINT mMsg,

WPARAM wParam,

LPARAM lParam)

{

.

.

.

return 0L; /* or whatever is appropriate */

}

Where ctl is the control being sent the message. The remaining arguments and return
value is fully documented in the Windows documentation under the WindowProc

function and the Windows Messages documentation.

WDS keeps a list of functions associated with each message associated with each con-
trol. When a particular message is received the appropriate list of handler functions
gets executed sequentially. AddHandlerAfter appends the new function to the end of
this list, and AddHandlerBefore adds the new function to the beginning of the list.

WDS may also, and optionally, execute the Windows default procedure associated
with a given message either before or after the user added list of functions. This
behavior may be controlled via DefaultProcessingMode.

Windows will only see the return value of the last message handler executed including,
if applicable, the default.

Example:

int hSize, vSize;

static long process_wm_size(object ctl,

HWND hwnd,

UINT mMsg,

WPARAM wParam,

LPARAM lParam)

{

hSize = LOWORD(lParam);

vSize = HIWORD(lParam);

return 0L;

}

.

.

gAddHandlerAfter(ctl, (unsigned) WM_SIZE, process_wm_size);

.

.

c© 1995-1996 Blake McBride

118 Dynace Windows Development System Manual

See also: DefaultProcessingMode, AddHandlerBefore, CallDefaultProc

[AddHandlerBefore]AddHandlerBefore::Control

r = gAddHandlerBefore(ctl, msg, func);

object ctl; /* a control object */

unsigned msg; /* message */

long (*func)(); /* function pointer */

object r; /* the control obj */

This function is fully documented under AddHandlerAfter.

See also: AddHandlerAfter

[CallDefaultProc]CallDefaultProc::Control

r = gCallDefaultProc(ctl, msg, wp, lp)

object ctl; /* a control object */

unsigned msg; /* message */

WPARAM wp; /* wParam value */

LPARAM lp; /* lParam value */

long r; /* result of call */

This method is used to explicitly call the default Windows message handler associ-
ated with message msg. This method is normally called from within a programmer
defined message handler (see AddHandlerAfter) which is provided with the wp and
lp parameters. These parameters are fully documented in the Windows Messages
documentation and relate directly to the particular message.

msg is the particular message you wish to affect. These messages are fully documented
in the Windows documentation in the Messages section. They normally begin with
WM_.

Example:

gCallDefaultProc(ctl, msg, wParam, lParam);

See also: DefaultProcessingMode, AddHandlerAfter

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 119

[CheckFunction]CheckFunction::Control

r = gCheckFunction(ctl, fun);

object ctl; /* control object */

int (*fun)(); /* check function */

object r; /* ctl object */

This method is used to associate an auxiliary checking function to a control. When a
dialog is accepted, WDS goes through each control to assure the validity of the data
associated with each control as defined by the control object. The ability to associated
an additional function for validating the data associated with a control gives the
programmer the ability to perform any additional application specific checking against
a control’s data.

The auxiliary checking function takes the following form:

int fun(object ctl, object val, char *buf)

{

....

}

Where ctl is the control object, and val is a Dynace object which represents the
value the control has associated with it. buf is a pointer to a buffer area which fun

must set to an appropriate error message if an error occurs. fun returns a 1 if an
error occurs and 0 otherwise.

All controls support this feature except the PushButton class, because it is an imme-
diate action control with no associated value.

Example:

object ctl;

gCheckFunction(ctl, fun);

See also: GetControl::Dialog

[CheckValue]CheckValue::Control

r = gCheckValue(ctl)

object ctl; /* a control object */

int r; /* result of call */

This method is used to explicitly cause all error checking functions and parameters
associated with control ctl to be checked. If an error is encountered an appropriate

c© 1995-1996 Blake McBride

120 Dynace Windows Development System Manual

error message will be displayed and a 1 will be returned. If no error is encountered a
0 is returned.

This method is implemented by all subclasses of Control and mainly used internally
when the dialog is accepted.

Example:

gCheckValue(ctl);

See also: CheckFunction::Control

[DeepDispose]DeepDispose::Control

This method performs the same function as Dispose. See that method for details.

[DefaultProcessingMode]DefaultProcessingMode::Control

r = gDefaultProcessingMode(ctl, msg, mode);

object ctl; /* a control object */

unsigned msg; /* message */

int mode; /* default processing mode */

object r; /* the control obj */

This method is used to determine when or if the Windows default message procedure
is processed for a given message (msg) associated with a particular control (ctl).

WDS allows a programmer to specify an arbitrary number of functions to be ex-
ecuted whenever a control receives a specific message (via AddHandlerAfter and
AddHandlerBefore). Windows has default procedures associated with many control
messages. At times it is necessary to replace or augment this default functionality.
DefaultProcessingMode gives the programmer control over when and if this default
Windows functionality. mode is used to specify the desired mode. The following table
indicates the valid modes:

0 Do not execute the Windows default processing

1 Execute default processing after programmer defined handlers

2 Execute default processing before programmer defined handlers

Note that the default mode is always 1, and must be explicitly changed, if desired,
for each message associated with each control.

msg is the particular message you wish to affect. These messages are fully documented
in the Windows documentation in the Messages section. They normally begin with
WM_.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 121

Example:

gDefaultProcessingMode(ctl, (unsigned) WM_SIZE, 0);

See also: CallDefaultProc, AddHandlerAfter

[Dispose]Dispose::Control

r = gDispose(ctl);

object ctl; /* a control object */

object r; /* NULL */

This method is used to remove and dispose of a control object when it is no longer
needed. This method is rarely needed due to the fact that when a dialog is disposed
it automatically calls this method on each of its associated controls.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object ctl;

ctl = gDispose(ctl);

See also: DeepDispose

[Handle]Handle::Control

h = gHandle(ctl);

object ctl; /* control object */

HANDLE h; /* Windows handle */

This method is used to obtain the Windows internal handle associated with a control
object. It will only return a valid handle while the dialog is being performed via
gPerform. NULL will be returned otherwise.

Note that this method may be used with most WDS objects in order to obtain the
internal handle that Windows normally associates with each type of object. See the
appropriate documentation.

c© 1995-1996 Blake McBride

122 Dynace Windows Development System Manual

Example:

object ctl;

HANDLE h;

h = gHandle(ctl);

See also: GetControl::Dialog

[SetTopic]SetTopic::Control

pt = gSetTopic(ctl, tpc);

object ctl; /* control object */

char *tpc; /* help topic */

char *pt; /* previous help topic */

This method is used to associate help text with specific control ctl. The help text is
defined using the Windows help system and labeled with the topic indicated by tpc.
Then, if the user hits the F1 key while in the control, WDS will automatically bring
up the Windows help system and find the indicated topic. If no control specific help
is specified, WDS will use any help associated with the dialog as a whole.

WDS also supports dialog and control specific topics. See the appropriate sections.

This method returns any previous topic associated with the control.

Example:

object ctl;

gSetTopic(ctl, "myControlHelp");

See also: The HelpSystem class and SetTopic::Dialog

4.9.3 Text Control

The TextControl class is a control which enables the user to enter arbitrary alphanumeric
data on a single line. This control has numerous facilities to control the length and type of
input the user is allowed to enter.

The TextControl class is a subclass of Control and as such inherits all the functionality
associated with that class. This section only documents functionality particular to this class.

Standard control arguments are documented in the section entitled “Standard Control
Method Arguments”.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 123

[Attach]Attach::TextControl

r = gAttach(ctl, val);

object ctl; /* control object */

object val; /* ctl value */

object r; /* control object */

This method is used to associate an independent Dynace object with the value asso-
ciated with a control object. val should be an instance of the String class and will
be automatically updated to reflect the value associated with the control.

This object (val) will never be disposed by WDS, even after the control or associated
dialog are disposed. Therefore, this is one way of gaining access to a control’s value
after the life of the control. It is the programmer’s responsibility to dispose of the
object when it is no longer needed.

Example:

object ctl, val;

val = gNew(String);

gAttach(ctl, val);

See also: Value, StringValue, SetValue

[Capitalize]Capitalize::TextControl

r = gCapitalize(ctl);

object ctl; /* control object */

object r; /* control object */

This method is used to enable the auto-capitalize feature of the text control. If
enabled, all alpha entry made by the user will be converted to upper case both on
the display and internally to the control.

Example:

object ctl;

gCapitalize(ctl);

See also: TextRange

c© 1995-1996 Blake McBride

124 Dynace Windows Development System Manual

[MaxLength]MaxLength::TextControl

r = gMaxLength(ctl, len);

object ctl; /* control object */

int len; /* maximum length */

object r; /* control object */

This method is used to set the maximum number of characters the user may enter
into a text control. If the user attempts to enter more than len characters, including
spaces, the system will just beep. If the number of characters exceeds the field display
width, the display will scroll.

Example:

object ctl;

gMaxLength(ctl, 25);

See also: MinLength, TextRange, Capitalize, CheckFunction::Control

[MinLength]MinLength::TextControl

r = gMinLength(ctl, len);

object ctl; /* control object */

int len; /* minimum length */

object r; /* control object */

This method is used to set the minimum number of characters the user must enter
into a text control. If the user attempts to accept the dialog without entering len

characters, including spaces, WDS will issue an error message and return the user to
the incomplete field.

Example:

object ctl;

gMinLength(ctl, 5);

See also: MaxLength, TextRange, Capitalize, CheckFunction::Control

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 125

[NewCtl]NewCtl::TextControl

ctl = mNewCtl(TextControl, id);

unsigned id; /* control id */

object ctl; /* control object */

This method is used to create a new control object to be identified as id (see section
“Standard Control Method Arguments”). This method is mainly used internally.
A programmer would more often use AddControl::Dialog to create controls and
associated them to a dialog.

Example:

object ctl;

ctl = mNewCtl(TextControl, PERSON_NAME);

See also: AddControl::Dialog, GetControl::Dialog

[SetStringValue]SetStringValue::TextControl

r = gSetStringValue(ctl, val);

object ctl; /* control object */

char *val; /* ctl value */

object r; /* control object */

This method is used to set the value associated with a control. It is often used to set
the initial value prior to performing a dialog. val should be a pointer to a character
string which represents the desired value for the control.

Any previously associated value object will be disposed when the new value is set.

Example:

object ctl;

gSetStringValue(ctl, "Some value");

See also: SetValue, StringValue

c© 1995-1996 Blake McBride

126 Dynace Windows Development System Manual

[SetValue]SetValue::TextControl

r = gSetValue(ctl, val);

object ctl; /* control object */

object val; /* ctl value */

object r; /* control object */

This method is used to set the value associated with a control. It is often used to set
the initial value prior to performing a dialog. val should be a Dynace object which
is an instance of the String class and initialized to the value desired for the control.

Any previously associated object will be disposed when the new value is set. Also,
val will automatically be disposed when the control or associated dialog is disposed.

Example:

object ctl;

gSetValue(ctl, gNewWithStr(String, "Some value"));

See also: SetStringValue, Value, Attach

[StringValue]StringValue::TextControl

val = gStringValue(ctl);

object ctl; /* control object */

char *val; /* ctl value */

This method is used to obtain a C character pointer which represents the value asso-
ciated with the control. This pointer will not be valid after the control or associated
dialog are disposed.

Example:

object ctl;

char *val;

val = gStringValue(ctl);

See also: Value, Attach, SetStringValue, CtlStringValue::Dialog

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 127

[TextRange]TextRange::TextControl

r = gTextRange(ctl, min, max);

object ctl; /* control object */

int min; /* minimum length */

int max; /* maximum length */

object r; /* control object */

This method is used to set the minimum number of characters the user must enter
into a text control as well as the maximum number of characters allowed.

If the user attempts to enter more than max characters, including spaces, the system
will just beep. If the number of characters exceeds the field display width, the display
will scroll.

If the user attempts to accept the dialog without entering min characters, including
spaces, WDS will issue an error message and return the user to the incomplete field.

Example:

object ctl;

gTextRange(ctl, 5, 25);

See also: MaxLength, MinLength, Capitalize, CheckFunction::Control

[Value]Value::TextControl

val = gValue(ctl);

object ctl; /* control object */

object val; /* ctl value */

This method is used to obtain a Dynace object which represents the value associ-
ated with the control. The object returned will be an instance of the String class.
This object will be disposed by WDS when the control object or associated dialog is
disposed.

Example:

object ctl, val;

val = gValue(ctl);

See also: StringValue, Attach, SetValue

c© 1995-1996 Blake McBride

128 Dynace Windows Development System Manual

4.9.4 Numeric Control

The NumericControl class is a control which enables the user to enter arbitrary numeric
data. This control has numerous facilities to control the range and type of input the user
is allowed to enter.

The NumericControl class is a subclass of Control and as such inherits all the func-
tionality associated with that class. This section only documents functionality particular
to this class.

Standard control arguments are documented in the section entitled “Standard Control
Method Arguments”.

[Attach]Attach::NumericControl

r = gAttach(ctl, val);

object ctl; /* control object */

object val; /* ctl value */

object r; /* control object */

This method is used to associate an independent Dynace object with the value as-
sociated with a control object. val should be an instance of one of the Dynace
numeric classes which are subclasses of the Number class, such as ShortInteger or
DoubleFloat. This numeric object will be automatically updated to reflect the value
associated with the control.

This object (val) will never be disposed by WDS, even after the control or associated
dialog are disposed. Therefore, this is one way of gaining access to a control’s value
after the life of the control. It is the programmer’s responsibility to dispose of the
object when it is no longer needed.

Example:

object ctl, val;

val = gNewWithDouble(DoubleFloat, 0.0);

gAttach(ctl, val);

See also: Value, DoubleValue, ShortValue, SetValue

[DoubleValue]DoubleValue::NumericControl

val = gDoubleValue(ctl);

object ctl; /* control object */

double val; /* ctl value */

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 129

This method is used to obtain a C double which represents the value associated with
the control.

Example:

object ctl;

double val;

val = gDoubleValue(ctl);

See also: Value, Attach, SetDoubleValue, CtlDoubleValue::Dialog

UnsignedShortValue, ShortValue, LongValue

[LongValue]LongValue::NumericControl

val = gLongValue(ctl);

object ctl; /* control object */

long val; /* ctl value */

This method is used to obtain a C long integer which represents the value associated
with the control.

Example:

object ctl;

long val;

val = gLongValue(ctl);

See also: Value, Attach, SetLongValue, CtlLongValue::Dialog

UnsignedShortValue, ShortValue, DoubleValue

[NewCtl]NewCtl::NumericControl

ctl = mNewCtl(NumericControl, id);

unsigned id; /* control id */

object ctl; /* control object */

This method is used to create a new control object to be identified as id (see section
“Standard Control Method Arguments”). This method is mainly used internally.
A programmer would more often use AddControl::Dialog to create controls and
associated them to a dialog.

c© 1995-1996 Blake McBride

130 Dynace Windows Development System Manual

Example:

object ctl;

ctl = mNewCtl(NumericControl, PERSON_AGE);

See also: AddControl::Dialog, GetControl::Dialog

[NumericRange]NumericRange::NumericControl

r = gNumericRange(ctl, min, max, dp);

object ctl; /* control object */

double min; /* minimum value */

double max; /* maximum value */

int dp; /* decimal places */

object r; /* control object */

This method is used to set the minimum and maximum allowable values the control
will accept from the user. It also sets the number of digits to the right of the decimal
point the control will accept.

If the user enters a number outside the specified range, WDS will issue an error
message and prompt the user for an acceptable value.

Example:

object ctl;

gNumericRange(ctl, 5.0, 25.0, 1);

See also: CheckFunction::Control

[SetDoubleValue]SetDoubleValue::NumericControl

r = gSetDoubleValue(ctl, val);

object ctl; /* control object */

double val; /* ctl value */

object r; /* control object */

This method is used to set the value associated with a control. It is often used to
set the initial value prior to performing a dialog. val should be the value which
represents the desired value for the control.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 131

Any previously associated value object (associated via SetValue) will be disposed
when the new value is set.

Example:

object ctl;

gSetDoubleValue(ctl, 3.14159265358979);

See also: SetValue, DoubleValue, CtlDoubleValue::Dialog, SetUShortValue,

SetShortValue, SetLongValue

[SetLongValue]SetLongValue::NumericControl

r = gSetLongValue(ctl, val);

object ctl; /* control object */

long val; /* ctl value */

object r; /* control object */

This method is used to set the value associated with a control. It is often used to
set the initial value prior to performing a dialog. val should be the value which
represents the desired value for the control.

Any previously associated value object (associated via SetValue) will be disposed
when the new value is set.

Example:

object ctl;

gSetLongValue(ctl, 66L);

See also: SetValue, LongValue, CtlLongValue::Dialog, SetUShortValue,

SetShortValue, SetDoubleValue

[SetShortValue]SetShortValue::NumericControl

r = gSetShortValue(ctl, val);

object ctl; /* control object */

int val; /* ctl value */

object r; /* control object */

c© 1995-1996 Blake McBride

132 Dynace Windows Development System Manual

This method is used to set the value associated with a control. It is often used to
set the initial value prior to performing a dialog. val should be the value which
represents the desired value for the control.

Any previously associated value object (associated via SetValue) will be disposed
when the new value is set.

Example:

object ctl;

gSetShortValue(ctl, 66);

See also: SetValue, ShortValue, CtlShortValue::Dialog, SetUShortValue,

SetLongValue, SetDoubleValue

[SetUShortValue]SetUShortValue::NumericControl

r = gSetUShortValue(ctl, val);

object ctl; /* control object */

unsigned val; /* ctl value */

object r; /* control object */

This method is used to set the value associated with a control. It is often used to
set the initial value prior to performing a dialog. val should be the value which
represents the desired value for the control.

Any previously associated value object (associated via SetValue) will be disposed
when the new value is set.

Example:

object ctl;

gSetUShortValue(ctl, 66);

See also: SetValue, UnsignedShortValue, CtlUnsignedShortValue::Dialog

SetShortValue, SetLongValue, SetDoubleValue

[SetValue]SetValue::NumericControl

r = gSetValue(ctl, val);

object ctl; /* control object */

object val; /* ctl value */

object r; /* control object */

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 133

This method is used to set the value associated with a control. It is often used to set
the initial value prior to performing a dialog. val should be a Dynace object which
is an instance of one of the subclasses of the Number class and initialized to the value
desired for the control.

Any previously associated object will be disposed when the new value is set. Also,
val will automatically be disposed when the control or associated dialog is disposed.

Example:

object ctl;

gSetValue(ctl, gNewWithDouble(DoubleFloat, 3.141));

See also: Value, SetShortValue, SetUShortValue SetLongValue,

SetDoubleValue

[ShortValue]ShortValue::NumericControl

val = gShortValue(ctl);

object ctl; /* control object */

short val; /* ctl value */

This method is used to obtain a C short integer which represents the value associated
with the control.

Example:

object ctl;

short val;

val = gShortValue(ctl);

See also: Value, Attach, SetShortValue, CtlShortValue::Dialog

UnsignedShortValue, LongValue, DoubleValue

[UnsignedShortValue]UnsignedShortValue::NumericControl

val = gUnsignedShortValue(ctl);

object ctl; /* control object */

unsigned short val; /* ctl value */

This method is used to obtain a C unsigned short integer which represents the value
associated with the control.

c© 1995-1996 Blake McBride

134 Dynace Windows Development System Manual

Example:

object ctl;

unsigned short val;

val = gUnsignedShortValue(ctl);

See also: Value, Attach, SetUShortValue, CtlUnsignedShortValue::Dialog

ShortValue, LongValue, DoubleValue

[Value]Value::NumericControl

val = gValue(ctl);

object ctl; /* control object */

object val; /* ctl value */

This method is used to obtain a Dynace object which represents the value associated
with the control. The object returned will be an instance of one of the subclasses of
the Number class. This object will be disposed by WDS when the control object or
associated dialog is disposed.

Example:

object ctl, val;

val = gValue(ctl);

See also: ShortValue, DoubleValue, Attach, SetValue

4.9.5 Date Control

The DateControl class is a control which enables the user to enter date information. The
user enters dates in the form mm/dd/yy or mm/dd/yyyy, and when the user leaves the
field it changes to the form MMM DD, YYYY. For example, the user would enter 6/8/59
and when the field is accepted it will be changed to display Jun 8, 1959.

Dates are stored internally as C longs in the form YYYYMMDD so that 6/8/59 would
be represented as the long 19590608. This control has numerous facilities to control the
range and type of input the user is allowed to enter.

The DateControl class is a subclass of Control and as such inherits all the functionality
associated with that class. This section only documents functionality particular to this class.

Standard control arguments are documented in the section entitled “Standard Control
Method Arguments”.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 135

[Attach]Attach::DateControl

r = gAttach(ctl, val);

object ctl; /* control object */

object val; /* ctl value */

object r; /* control object */

This method is used to associate an independent Dynace object with the value asso-
ciated with a control object. val should be an instance of the Date class. This date
object will be automatically updated to reflect the value associated with the control.

This object (val) will never be disposed by WDS, even after the control or associated
dialog are disposed. Therefore, this is one way of gaining access to a control’s value
after the life of the control. It is the programmer’s responsibility to dispose of the
object when it is no longer needed.

Example:

object ctl, val;

val = vNew(Date, 0L);

gAttach(ctl, val);

See also: Value, LongValue, SetValue, SetLongValue

[DateRange]DateRange::DateControl

r = gDateRange(ctl, min, max, an);

object ctl; /* control object */

long min; /* minimum value */

long max; /* maximum value */

int an; /* allow none */

object r; /* control object */

This method is used to set the minimum and maximum allowable values the control
will accept from the user. It also controls whether or not the control will accept no
date.

min and max are of the form YYYYMMDD. For example 6/8/59 would be represented
as 19590608. If an is 0 the user must enter a valid date between min and max. If,
however, an is 1, the user must either enter a valid date between the given ranges or
may also leave the field blank. If the user does not enter a date the field value will be
0L.

c© 1995-1996 Blake McBride

136 Dynace Windows Development System Manual

If the user enters an invalid date or one outside the specified range, WDS will issue
an error message and prompt the user for an acceptable value.

Example:

object ctl;

gDateRange(ctl, 19990101L, 19991231L, 1);

See also: CheckFunction::Control

[LongValue]LongValue::DateControl

val = gLongValue(ctl);

object ctl; /* control object */

long val; /* ctl value */

This method is used to obtain a C long integer which represents the value associated
with the control. It will be in the form YYYYMMDD. For example 6/8/59 would be
represented as 19590608.

Example:

object ctl;

long val;

val = gLongValue(ctl);

See also: Value, Attach, SetLongValue, CtlLongValue::Dialog

[NewCtl]NewCtl::DateControl

ctl = mNewCtl(DateControl, id);

unsigned id; /* control id */

object ctl; /* control object */

This method is used to create a new control object to be identified as id (see section
“Standard Control Method Arguments”). This method is mainly used internally.
A programmer would more often use AddControl::Dialog to create controls and
associated them to a dialog.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 137

Example:

object ctl;

ctl = mNewCtl(DateControl, PERSON_BD);

See also: AddControl::Dialog, GetControl::Dialog

[SetLongValue]SetLongValue::DateControl

r = gSetLongValue(ctl, val);

object ctl; /* control object */

long val; /* ctl value */

object r; /* control object */

This method is used to set the value associated with a control. It is often used to
set the initial value prior to performing a dialog. val should be the value which
represents the desired value for the control of the form YYYYMMDD. For example
6/8/59 would be 19590608.

Any previously associated value object (associated via SetValue) will be disposed
when the new value is set.

Example:

object ctl;

gSetLongValue(ctl, 19990101L);

See also: SetValue, LongValue, CtlLongValue::Dialog

[SetValue]SetValue::DateControl

r = gSetValue(ctl, val);

object ctl; /* control object */

object val; /* ctl value */

object r; /* control object */

This method is used to set the value associated with a control. It is often used to set
the initial value prior to performing a dialog. val should be a Dynace object which
is an instance of the Date class and initialized to the value desired for the control.

Any previously associated object will be disposed when the new value is set. Also,
val will automatically be disposed when the control or associated dialog is disposed.

c© 1995-1996 Blake McBride

138 Dynace Windows Development System Manual

Example:

object ctl;

gSetValue(ctl, vNew(Date, 19940101L));

See also: SetLongValue, Value

[Value]Value::DateControl

val = gValue(ctl);

object ctl; /* control object */

object val; /* ctl value */

This method is used to obtain a Dynace object which represents the value associated
with the control. The object returned will be an instance of the Date class. This object
will be disposed by WDS when the control object or associated dialog is disposed.

Example:

object ctl, val;

val = gValue(ctl);

See also: LongValue, Attach, SetValue

4.9.6 Push Buttons

The PushButton class represents a control which allows the user to perform an immediate
action. That means that there is no particular data associated with the control. The user
pushes the button and an associated action gets performed at that point. The PushButton
class allows the programmer to associate a C function to the control such that whenever
the user clicks on the button the specified function will be evoked.

The PushButton class is a subclass of Control and as such inherits all the functionality
associated with that class. This section only documents functionality particular to this
class.

Standard control arguments are documented in the section entitled “Standard Control
Method Arguments”.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 139

[NewCtl]NewCtl::PushButton

ctl = mNewCtl(PushButton, id);

unsigned id; /* control id */

object ctl; /* control object */

This method is used to create a new control object to be identified as id (see section
“Standard Control Method Arguments”). This method is mainly used internally.
A programmer would more often use AddControl::Dialog to create controls and
associated them to a dialog.

Example:

object ctl;

ctl = mNewCtl(PushButton, MY_BUTTON);

See also: AddControl::Dialog, GetControl::Dialog

[Perform]Perform::PushButton

r = gPerform(ctl);

object ctl; /* control object */

int r; /* result */

This method is used to manually evoke the function a programmer associated with a
push button. The value returned is the result of the function attached to the button.

This method is seldom needed because WDS automatically evokes the function when
the user clicks the button.

Example:

object ctl;

gPerform(ctl);

See also: SetFunction

c© 1995-1996 Blake McBride

140 Dynace Windows Development System Manual

[SetFunction]SetFunction::PushButton

r = gSetFunction(ctl, fun);

object ctl; /* control object */

int (*fun)(); /* check function */

ofun r; /* previous check function */

This method is used to associate a C function to a push button such that if the user
clicks the button the C function will immediately get evoked. The value returned is
the previous function, if any, associated with the control.

The C function takes the following form:

int fun(object ctl, object dlg)

{

....

}

Where ctl is the control object, and dlg is the object representing the dialog the
control is associated with. The value returned by fun only has meaning if the button
was either IDOK or IDCANCEL (the ones normally used to exit the dialog). If the return
value is 1 then the dialog will exit like normal. If the return value is 0 then the dialog
will not exit.

Example:

object ctl;

gSetFunction(ctl, fun);

See also: Perform

4.9.7 Check Boxes

The CheckBox class represents a control which allows the user to select or de-select a par-
ticular option. Unlike radio buttons, check boxes are not mutually exclusive.

The CheckBox class is a subclass of Control and as such inherits all the functionality
associated with that class. This section only documents functionality particular to this
class.

Standard control arguments are documented in the section entitled “Standard Control
Method Arguments”.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 141

[Attach]Attach::CheckBox

r = gAttach(ctl, val);

object ctl; /* control object */

object val; /* ctl value */

object r; /* control object */

This method is used to associate an independent Dynace object with the state asso-
ciated with a control object. val should be an instance of the ShortInteger class.
This object will be automatically updated to reflect the state associated with the
control.

The object will represent 0 if the box is not checked, 1 if it is checked, or 2 if the box
is grayed.

This object (val) will never be disposed by WDS, even after the control or associated
dialog are disposed. Therefore, this is one way of gaining access to a control’s value
after the life of the control. It is the programmer’s responsibility to dispose of the
object when it is no longer needed.

Example:

object ctl, val;

val = gNewWithInt(ShortInteger, 0);

gAttach(ctl, val);

See also: Value, ShortValue, SetValue, SetShortValue

[NewCtl]NewCtl::CheckBox

ctl = mNewCtl(CheckBox, id);

unsigned id; /* control id */

object ctl; /* control object */

This method is used to create a new control object to be identified as id (see section
“Standard Control Method Arguments”). This method is mainly used internally.
A programmer would more often use AddControl::Dialog to create controls and
associated them to a dialog.

Example:

object ctl;

ctl = mNewCtl(CheckBox, MY_CHECKBOX);

c© 1995-1996 Blake McBride

142 Dynace Windows Development System Manual

See also: AddControl::Dialog, GetControl::Dialog

[SetShortValue]SetShortValue::CheckBox

r = gSetShortValue(ctl, val);

object ctl; /* control object */

int val; /* ctl value */

object r; /* control object */

This method is used to set the value associated with a control. It is often used to
set the initial value prior to performing a dialog. val should be the value which
represents the desired state associated with the check box.

val should be set to 0 to uncheck the box, 1 to check it, or 2 to gray the box (only
work on 3-state boxes).

Any previously associated value object (associated via SetValue) will be disposed
when the new value is set.

Example:

object ctl;

gSetShortValue(ctl, 1);

See also: SetValue, ShortValue, CtlShortValue::Dialog

[SetValue]SetValue::CheckBox

r = gSetValue(ctl, val);

object ctl; /* control object */

object val; /* ctl value */

object r; /* control object */

This method is used to set the value associated with a control. It is often used to set
the initial value prior to performing a dialog. val should be a Dynace object which
is an instance of the ShortInteger class and initialized to the value desired for the
control.

val should represent 0 to uncheck the box, 1 to check it, or 2 to gray the box (only
work on 3-state boxes).

Any previously associated object will be disposed when the new value is set. Also,
val will automatically be disposed when the control or associated dialog is disposed.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 143

Example:

object ctl;

gSetValue(ctl, gNewWithInt(ShortInteger, 1));

See also: SetShortValue, Value

[ShortValue]ShortValue::CheckBox

val = gShortValue(ctl);

object ctl; /* control object */

short val; /* ctl value */

This method is used to obtain a C short integer which represents the state associated
with the control. The returned integer will be 0 if the box is not checked, 1 if it is
checked, or 2 if the box is grayed.

Example:

object ctl;

short val;

val = gShortValue(ctl);

See also: Value, Attach, SetShortValue, CtlShortValue::Dialog

[Value]Value::CheckBox

val = gValue(ctl);

object ctl; /* control object */

object val; /* ctl value */

This method is used to obtain a Dynace object which represents the value associated
with the control. The object returned will be an instance of the ShortInteger class.
The returned object will represent 0 if the box is not checked, 1 if it is checked, or 2
if the box is grayed. This object will be disposed by WDS when the control object or
associated dialog is disposed.

Example:

object ctl, val;

val = gValue(ctl);

c© 1995-1996 Blake McBride

144 Dynace Windows Development System Manual

See also: ShortValue, Attach, SetValue

4.9.8 Radio Buttons

The RadioButton class represents a control which allows the user to select or de-select a
particular option. Unlike check boxes, however, radio buttons are mutually exclusive within
a group - similar to the buttons on old fashioned radios, when one button gets selected all
the other ones in the group get de-selected.

When using radio buttons, be sure to use the Group function in order to tell WDS which
radio buttons should be grouped together.

The RadioButton class is a subclass of Control and as such inherits all the functionality
associated with that class. This section only documents functionality particular to this class.

Standard control arguments are documented in the section entitled “Standard Control
Method Arguments”.

[Attach]Attach::RadioButton

r = gAttach(ctl, val);

object ctl; /* control object */

object val; /* ctl value */

object r; /* control object */

This method is used to associate an independent Dynace object with the state asso-
ciated with a control object. val should be an instance of the ShortInteger class.
This object will be automatically updated to reflect the state associated with the
control.

The object will represent 0 if the button is not selected, 1 if it is selected, or 2 if the
button is grayed.

This object (val) will never be disposed by WDS, even after the control or associated
dialog are disposed. Therefore, this is one way of gaining access to a control’s value
after the life of the control. It is the programmer’s responsibility to dispose of the
object when it is no longer needed.

Example:

object ctl, val;

val = gNewWithInt(ShortInteger, 0);

gAttach(ctl, val);

See also: Value, ShortValue, SetValue, SetShortValue

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 145

[Group]Group::RadioButton

r = mGroup(ctl, id1, id2);

object ctl; /* control object */

unsigned id1; /* starting ctl id */

unsigned id2; /* ending ctl id */

object r; /* control object */

This method is used to tell WDS which radio buttons are to be considered part of
the same mutually exclusive group. id1 and id2 are the resource editor defined id’s
associated with the beginning and end of the group. WDS uses this information to
automatically de-select all radio buttons which are part of a group when one of the
buttons is selected.

Example:

object ctl;

mGroup(ctl, FIRST_RB, LAST_RB);

[NewCtl]NewCtl::RadioButton

ctl = mNewCtl(RadioButton, id);

unsigned id; /* control id */

object ctl; /* control object */

This method is used to create a new control object to be identified as id (see section
“Standard Control Method Arguments”). This method is mainly used internally.
A programmer would more often use AddControl::Dialog to create controls and
associated them to a dialog.

Example:

object ctl;

ctl = mNewCtl(RadioButton, MY_RADIOBUTTON);

See also: AddControl::Dialog, GetControl::Dialog, Group

c© 1995-1996 Blake McBride

146 Dynace Windows Development System Manual

[SetShortValue]SetShortValue::RadioButton

r = gSetShortValue(ctl, val);

object ctl; /* control object */

int val; /* ctl value */

object r; /* control object */

This method is used to set the value associated with a control. It is often used to
set the initial value prior to performing a dialog. val should be the value which
represents the desired state associated with the radio button.

val should be set to 0 to de-select the button, 1 to select it, or 2 to gray the button
(only work on 3-state buttons).

Any previously associated value object (associated via SetValue) will be disposed
when the new value is set.

Example:

object ctl;

gSetShortValue(ctl, 1);

See also: SetValue, ShortValue, CtlShortValue::Dialog, Group

[SetValue]SetValue::RadioButton

r = gSetValue(ctl, val);

object ctl; /* control object */

object val; /* ctl value */

object r; /* control object */

This method is used to set the value associated with a control. It is often used to set
the initial value prior to performing a dialog. val should be a Dynace object which
is an instance of the ShortInteger class and initialized to the value desired for the
control.

val should represent 0 to de-select the button, 1 to select it, or 2 to gray the button
(only work on 3-state buttons).

Any previously associated object will be disposed when the new value is set. Also,
val will automatically be disposed when the control or associated dialog is disposed.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 147

Example:

object ctl;

gSetValue(ctl, gNewWithInt(ShortInteger, 1));

See also: SetShortValue, Value, Group

[ShortValue]ShortValue::RadioButton

val = gShortValue(ctl);

object ctl; /* control object */

short val; /* ctl value */

This method is used to obtain a C short integer which represents the state associated
with the control. The returned integer will be 0 if the button is not selected, 1 if it is
selected, or 2 if the button is grayed.

Example:

object ctl;

short val;

val = gShortValue(ctl);

See also: Value, Attach, SetShortValue, CtlShortValue::Dialog

[Value]Value::RadioButton

val = gValue(ctl);

object ctl; /* control object */

object val; /* ctl value */

This method is used to obtain a Dynace object which represents the value associated
with the control. The object returned will be an instance of the ShortInteger class.
The returned object will represent 0 if the button is not selected, 1 if it is selected,
or 2 if the button is grayed. This object will be disposed by WDS when the control
object or associated dialog is disposed.

Example:

object ctl, val;

val = gValue(ctl);

c© 1995-1996 Blake McBride

148 Dynace Windows Development System Manual

See also: ShortValue, Attach, SetValue

4.9.9 List Boxes

The ListBox class represents a control which allows the user to select from a list of choices.
These choices are presented in a vertical, possibly drop down, list of text choices. This
control supports access to the user’s choice via the text option selected or an ordinal value.

The application specifies, at runtime, the choices located in the list box.

The main difference between list boxes and combo boxes is that with list boxes the user
can only select from the available choices, however, in addition, combo boxes allow the user
to enter a choice independent of the available options.

The ListBox class is a subclass of Control and as such inherits all the functionality
associated with that class. This section only documents functionality particular to this
class.

Standard control arguments are documented in the section entitled “Standard Control
Method Arguments”.

[AddOption]AddOption::ListBox

r = gAddOption(ctl, op);

object ctl; /* control object */

char *op; /* new option */

object r; /* control object */

This method is used to append a new option to the list of options associated with a
list box. This method may be used prior to or during the execution (via gPerform)
of a dialog.

op may also be a Dynace object, an instance of the String class, representing the
new choice. If a Dynace object is used, it must be typecast to a string and it will be
disposed when the control or associated dialog are disposed.

Example:

object ctl;

gAddOption(ctl, "The first choice");

gAddOption(ctl, "The second choice");

See also: Alphabetize::ListBox, AddOptionAt::ListBox

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 149

[Alphabetize]Alphabetize::ListBox

r = gAlphabetize(ctl);

object ctl; /* control object */

object r; /* control object */

This method is used to cause the automatic alphabetization of all options added via
the AddOption method. In order to function properly, Alphabetize must be called
prior to any calls to AddOption. This method simply returns the object passed.

See also: AddOption::ListBox

[Attach]Attach::ListBox

r = gAttach(ctl, val);

object ctl; /* control object */

object val; /* ctl value */

object r; /* control object */

This method is used to associate an independent Dynace object with the state asso-
ciated with a control object. val should be an instance of the ShortInteger class
or the String class. This object will be automatically updated to reflect the state
associated with the control.

If val is an instance of the ShortIntgeger class it will be used to represent the
ordinal value of the selected item. This value is a 0 based index from the top of the
list to the bottom. -1 is used to represent no valid selection.

If val is an instance of the String class it will be used to represent the string repre-
sented by the user’s choice. If no choice is made it will represent "".

This object (val) will never be disposed by WDS, even after the control or associated
dialog are disposed. Therefore, this is one way of gaining access to a control’s value
after the life of the control. It is the programmer’s responsibility to dispose of the
object when it is no longer needed.

Example:

object ctl, val;

val = gNewWithInt(ShortInteger, 0);

gAttach(ctl, val);

See also: Value, ShortValue, StringValue

c© 1995-1996 Blake McBride

150 Dynace Windows Development System Manual

[GetSelections]GetSelections::ListBox

ary = gGetSelections(ctl);

object ctl; /* control object */

object ary; /* array of selections */

This method is used to obtain an array representing the items selected by the user. It
is most useful with list boxes which have multi-selection enabled. The array returned
is an instance of the IntegerArray class and must be explicitly disposed when no
longer needed. Each element of the array represents a zero based index of one of the
user’s selections, and the size of the array represents the number of items selected.

This method may only be used while a dialog is active and will return NULL otherwise.

See also: ValueAt, NumbSelected, Value, ListIndex

[ListIndex]ListIndex::ListBox

val = gListIndex(ctl);

object ctl; /* control object */

object val; /* ctl value */

This method is used to obtain a Dynace object which represents the value associated
with the control. The object returned will be an instance of the ShortInteger class.
The returned object will represent the ordinal value of the choice made by the user.
This ordinal value is a zero based index from top to bottom. -1 indicates that no
choice was made.

This object will be disposed by WDS when the control object or associated dialog is
disposed.

Example:

object ctl, val;

val = gListIndex(ctl);

See also: ShortValue, Value, StringValue, GetSelections, SetValue

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 151

[NewCtl]NewCtl::ListBox

ctl = mNewCtl(ListBox, id);

unsigned id; /* control id */

object ctl; /* control object */

This method is used to create a new control object to be identified as id (see section
“Standard Control Method Arguments”). This method is mainly used internally.
A programmer would more often use AddControl::Dialog to create controls and
associated them to a dialog.

Example:

object ctl;

ctl = mNewCtl(ListBox, MY_LISTBOX);

See also: AddControl::Dialog, GetControl::Dialog, AddOption

[NumbSelected]NumbSelected::ListBox

n = gNumbSelected(ctl);

object ctl; /* control object */

int n; /* number selected */

This method is used to obtain the number of list box items the user has selected. It is
mainly used with multi-selection list boxes. This method should only be used while
the dialog is active and will return -1 otherwise.

See also: GetSelections

[RemoveAll]RemoveAll::ListBox

r = gRemoveAll(ctl);

object ctl; /* control object */

object r; /* control object */

This method is used to remove all items from a list box. It may be used prior to or
during the execution of a dialog. The control object passed is returned.

See also: RemoveStr, RemoveInt

c© 1995-1996 Blake McBride

152 Dynace Windows Development System Manual

[RemoveInt]RemoveInt::ListBox

r = gRemoveInt(ctl, idx);

object ctl; /* control object */

int idx; /* index */

object r; /* control object */

This method is used to remove an item from a list box while the dialog is active. idx
is a zero based index of the item to be removed. If the operation secceeded ctl is
returned, otherwise NULL is returned.

This method may only be used while a dialog is active. It should not be used prior
to performing (via gPerform) a dialog or after the user has accepted or canceled the
dialog.

Example:

object ctl;

gRemoveInt(ctl, 1);

See also: RemoveStr, RemoveAll

[RemoveStr]RemoveStr::ListBox

r = gRemoveStr(ctl, itm);

object ctl; /* control object */

char *itm; /* item */

object r; /* control object */

This method is used to remove an item from a list box while the dialog is active. itm
is the string to be removed. If the operation secceeded ctl is returned, otherwise
NULL is returned.

This method may only be used while a dialog is active. It should not be used prior to
performing (gPerform) a dialog or after the user has accepted or canceled the dialog.

Example:

object ctl;

gRemoveStr(ctl, "Some Option");

See also: RemoveInt, FindMode

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 153

[Required]Required::ListBox

r = gRequired(ctl, mode);

object ctl; /* control object */

int mode; /* required mode */

object r; /* control object */

This method is used to determine whether or not the user is required to make a valid
selection prior to WDS allowing the acceptance of the dialog. If it is required and
the user does not make a valid selection, WDS will issue an error message and return
them to the control.

mode is 1 to make it required and 0 otherwise.

Example:

object ctl;

gRequired(ctl, 1);

See also: CheckFunction::Control, CheckValue::Control

[SetFunction]SetFunction::ListBox

r = gSetFunction(ctl, fun);

object ctl; /* control object */

int (*fun)(); /* check function */

ofun r; /* previous check function */

This method is used to associate a C function to a list box such that if the user double
clicks an item in the list box the C function will immediately get evoked. The value
returned by this method is the function, if any, which was previously associated with
the control.

The C function takes the following form:

int fun(object ctl, object dlg)

{

....

}

Where ctl is the control object, and dlg is the object representing the dialog the
control is associated with. The value returned by fun is ignored.

c© 1995-1996 Blake McBride

154 Dynace Windows Development System Manual

Example:

object ctl;

gSetFunction(ctl, fun);

See also: Perform, SetChgFunction

[SetShortValue]SetShortValue::ListBox

r = gSetShortValue(ctl, val);

object ctl; /* control object */

int val; /* ctl value */

object r; /* control object */

This method is used to set the default selection associated with the control. It is
often used to set the initial value prior to performing a dialog.

val will be used as the ordinal value of the selected item. This value is a 0 based
index from the top of the list to the bottom.

Any previously associated object (via Value) will be disposed when the new value is
set.

Example:

object ctl;

gSetShortValue(ctl, 1);

See also: SetStringValue, SetValue

[SetStringValue]SetStringValue::ListBox

r = gSetStringValue(ctl, val);

object ctl; /* control object */

char *val; /* ctl value */

object r; /* control object */

This method is used to set the default selection associated with the control. It is
often used to set the initial value prior to performing a dialog.

val will be used to select the option which matches the string.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 155

Any previously associated object (via val) will be disposed when the new value is
set.

Example:

object ctl;

gSetStringValue(ctl, "The choice");

See also: SetShortValue, SetValue

[SetValue]SetValue::ListBox

r = gSetValue(ctl, val);

object ctl; /* control object */

object val; /* ctl value */

object r; /* control object */

This method is used to set the default selection associated with the control. It is often
used to set the initial value prior to performing a dialog. val should be a Dynace
object which is an instance of either the String class or the ShortInteger class and
initialized to the value desired for the control.

If val is an instance of the ShortIntgeger class it will be used as the ordinal value
of the selected item. This value is a 0 based index from the top of the list to the
bottom.

If val is an instance of the String class it will be used to select the option which
matches the string represented by val.

Any previously associated object will be disposed when the new value is set. Also,
val will automatically be disposed when the control or associated dialog is disposed.

Example:

object ctl;

gSetValue(ctl, gNewWithInt(ShortInteger, 1));

or

gSetValue(ctl, gNewWithStr(String, "The choice"));

See also: SetShortValue, SetStringValue

c© 1995-1996 Blake McBride

156 Dynace Windows Development System Manual

[ShortValue]ShortValue::ListBox

val = gShortValue(ctl);

object ctl; /* control object */

short val; /* ctl value */

This method is used to obtain a C short which represents the value associated with
the control. The returned value will represent the ordinal value of the choice made
by the user. This ordinal value is a zero based index from top to bottom. -1 indicates
that no choice was made.

Example:

object ctl;

short val;

val = gShortValue(ctl);

See also: ListIndex, Value, GetSelections, StringValue, SetValue

[StringValue]StringValue::ListBox

val = gStringValue(ctl);

object ctl; /* control object */

char *val; /* ctl value */

This method is used to obtain a character string pointer which represents the value
associated with the control. The returned pointer will represent the text associated
with the user selected choices. It will point to "" if the user had not made a valid
selection.

The returned pointer will not be valid once the control object or associated dialog is
disposed.

Example:

object ctl;

char *val;

val = gStringValue(ctl);

See also: ShortValue, Value, ListIndex, GetSelections, SetValue

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 157

[Value]Value::ListBox

val = gValue(ctl);

object ctl; /* control object */

object val; /* ctl value */

This method is used to obtain a Dynace object which represents the value associated
with the control. The object returned will be an instance of the String class. The
returned object will represent the text associated with the user selected choices. If
no selection was made the object will represent "".

This object will be disposed by WDS when the control object or associated dialog is
disposed.

Example:

object ctl, val;

val = gValue(ctl);

See also: ShortValue, StringValue, ValueAt, ListIndex, GetSelections,

SetValue

[ValueAt]ValueAt::ListBox

val = gValueAt(ctl, idx);

object ctl; /* control object */

int idx; /* index */

object val; /* value at idx */

This method is used to obtain a Dynace object which represents the text associated
with the line indexed by the zero based index idx. The object returned will be an
instance of the String class. If the index is out of range this method will return NULL.

This method may only be called when the dialog is active. The object returned must
be explicitly disposed when no longer needed.

See also: ShortValue, Value, ListIndex, GetSelections, SetValue

4.9.10 Combo Boxes

The ComboBox class represents a control which allows the user to select from a list of choices
or enter an alternate text string. These choices are presented in a vertical, possibly drop
down, list of text choices. This control supports access to the user’s choice via the text
option selected or an ordinal value.

c© 1995-1996 Blake McBride

158 Dynace Windows Development System Manual

The application specifies, at runtime, the choices located in the list box.

The main difference between list boxes and combo boxes is that with list boxes the user
can only select from the available choices, however, in addition, combo boxes allow the user
to enter a choice independent of the available options.

The ComboBox class is a subclass of Control and as such inherits all the functionality
associated with that class. This section only documents functionality particular to this
class.

Standard control arguments are documented in the section entitled “Standard Control
Method Arguments”.

[AddEdtHandlerAfter]AddEdtHandlerAfter::ComboBox

r = gAddEdtHandlerAfter(ctl, msg, func);

object ctl; /* a control object */

unsigned msg; /* message */

long (*func)(); /* function pointer */

object r; /* the control obj */

This method is used to associate function func with the text entry window portion
of the combo box, message msg for control ctl. Whenever the text entry window of
control ctl receives message msg, func will be called.

ctl is the control object who’s text window messages you wish to process. msg is
the particular message you wish to trap. These messages are fully documented in the
Windows documentation in the Messages section. They normally begin with WM_.

func is the function which gets called whenever the specified message gets received
and takes the following form:

long func(object ctl,

HWND hwnd,

UINT mMsg,

WPARAM wParam,

LPARAM lParam)

{

.

.

.

return 0L; /* or whatever is appropriate */

}

Where ctl is the control being sent the message. The remaining arguments and return
value is fully documented in the Windows documentation under the WindowProc

function and the Windows Messages documentation.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 159

WDS keeps a list of functions associated with each message associated with each con-
trol. When a particular message is received the appropriate list of handler functions
gets executed sequentially. AddEdtHandlerAfter appends the new function to the
end of this list, and AddEdtHandlerBefore adds the new function to the beginning
of the list.

WDS may also, and optionally, execute the Windows default procedure associated
with a given message either before or after the user added list of functions. This
behavior may be controlled via DefaultEdtProcessingMode.

Windows will only see the return value of the last message handler executed including,
if applicable, the default.

Example:

int hSize, vSize;

static long process_wm_size(object ctl,

HWND hwnd,

UINT mMsg,

WPARAM wParam,

LPARAM lParam)

{

hSize = LOWORD(lParam);

vSize = HIWORD(lParam);

return 0L;

}

.

.

gAddEdtHandlerAfter(ctl, (unsigned) WM_SIZE,

process_wm_size);

.

.

See also: DefaultProcessingMode, AddEdtHandlerBefore,

AddHandlerAfter::Control

[AddEdtHandlerBefore]AddEdtHandlerBefore::ComboBox

r = gAddEdtHandlerBefore(ctl, msg, func);

object ctl; /* a control object */

unsigned msg; /* message */

long (*func)(); /* function pointer */

object r; /* the control obj */

c© 1995-1996 Blake McBride

160 Dynace Windows Development System Manual

This function is fully documented under AddEdtHandlerAfter.

See also: AddEdtHandlerAfter, AddHandlerAfter::Control

[AddOption]AddOption::ComboBox

r = gAddOption(ctl, op);

object ctl; /* control object */

char *op; /* new option */

object r; /* control object */

This method is used to append a new option to the list of options associated with a
combo box. This method may be used prior to or during the execution (via gPerform)
of a dialog.

op may also be a Dynace object, an instance of the String class, representing the
new choice. If a Dynace object is used, it must be typecast to a string and it will be
disposed when the control or associated dialog are disposed.

Example:

object ctl;

gAddOption(ctl, "The first choice");

gAddOption(ctl, "The second choice");

See also: Alphabetize::ComboBox, AddOptionAt::ComboBox

[Alphabetize]Alphabetize::ComboBox

r = gAlphabetize(ctl);

object ctl; /* control object */

object r; /* control object */

This method is used to cause the automatic alphabetization of all options added via
the AddOption method. In order to function properly, Alphabetize must be called
prior to any calls to AddOption. This method simply returns the object passed.

See also: AddOption::ComboBox

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 161

[Attach]Attach::ComboBox

r = gAttach(ctl, val);

object ctl; /* control object */

object val; /* ctl value */

object r; /* control object */

This method is used to associate an independent Dynace object with the state asso-
ciated with a control object. val should be an instance of the ShortInteger class
or the String class. This object will be automatically updated to reflect the state
associated with the control.

If val is an instance of the ShortIntgeger class it will be used to represent the
ordinal value of the selected item. This value is a 0 based index from the top of the
list to the bottom. -1 is used to represent no valid selection.

If val is an instance of the String class it will be used to represent the string repre-
sented by the user’s choice. If no choice is made it will represent "".

This object (val) will never be disposed by WDS, even after the control or associated
dialog are disposed. Therefore, this is one way of gaining access to a control’s value
after the life of the control. It is the programmer’s responsibility to dispose of the
object when it is no longer needed.

Example:

object ctl, val;

val = gNewWithInt(ShortInteger, 0);

gAttach(ctl, val);

See also: Value, ShortValue, StringValue

[DefaultEdtProcessingMode]DefaultEdtProcessingMode::ComboBox

r = gDefaultEdtProcessingMode(ctl, msg, mode);

object ctl; /* a control object */

unsigned msg; /* message */

int mode; /* default processing mode */

object r; /* the control obj */

This method is used to determine when or if the Windows default message procedure
is processed for a given message (msg) associated with the text entry window portion
of control (ctl).

c© 1995-1996 Blake McBride

162 Dynace Windows Development System Manual

WDS allows a programmer to specify an arbitrary number of functions to be executed
whenever the text entry portion of a combo box control receives a specific message (via
AddEdtHandlerAfter and AddEdtHandlerBefore). Windows has default procedures
associated with many control messages. At times it is necessary to replace or augment
this default functionality. DefaultEdtProcessingMode gives the programmer control
over when and if this default Windows functionality. mode is used to specify the
desired mode. The following table indicates the valid modes:

0 Do not execute the Windows default processing

1 Execute default processing after programmer defined handlers

2 Execute default processing before programmer defined handlers

Note that the default mode is always 1, and must be explicitly changed, if desired,
for each message associated with each control.

msg is the particular message you wish to affect. These messages are fully documented
in the Windows documentation in the Messages section. They normally begin with
WM_.

Example:

gDefaultEdtProcessingMode(ctl, (unsigned) WM_SIZE, 0);

See also: AddEdtHandlerAfter

[ListIndex]ListIndex::ComboBox

val = gListIndex(ctl);

object ctl; /* control object */

object val; /* ctl value */

This method is used to obtain a Dynace object which represents the value associated
with the control. The object returned will be an instance of the ShortInteger class.
The returned object will represent the ordinal value of the choice made by the user.
This ordinal value is a zero based index from top to bottom. -1 indicates that no
choice was made.

This object will be disposed by WDS when the control object or associated dialog is
disposed.

Example:

object ctl, val;

val = gListIndex(ctl);

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 163

See also: ShortValue, Value, StringValue, Attach, SetValue

[NewCtl]NewCtl::ComboBox

ctl = mNewCtl(ComboBox, id);

unsigned id; /* control id */

object ctl; /* control object */

This method is used to create a new control object to be identified as id (see section
“Standard Control Method Arguments”). This method is mainly used internally.
A programmer would more often use AddControl::Dialog to create controls and
associated them to a dialog.

Example:

object ctl;

ctl = mNewCtl(ComboBox, MY_COMBOBOX);

See also: AddControl::Dialog, GetControl::Dialog, AddOption

[RemoveAll]RemoveAll::ComboBox

r = gRemoveAll(ctl);

object ctl; /* control object */

object r; /* control object */

This method is used to remove all items from a combo box. It may be used prior to
or during the execution of a dialog. The control object passed is returned.

See also: RemoveStr, RemoveInt

[RemoveInt]RemoveInt::ComboBox

r = gRemoveInt(ctl, idx);

object ctl; /* control object */

int idx; /* index */

object r; /* control object */

This method is used to remove an item from a combo box while the dialog is active.
idx is a zero based index of the item to be removed. If the operation secceeded ctl

is returned, otherwise NULL is returned.

c© 1995-1996 Blake McBride

164 Dynace Windows Development System Manual

This method may only be used while a dialog is active. It should not be used prior to
performing (gPerform) a dialog or after the user has accepted or canceled the dialog.

Example:

object ctl;

gRemoveInt(ctl, 1);

See also: RemoveStr, RemoveAll

[RemoveStr]RemoveStr::ComboBox

r = gRemoveStr(ctl, itm);

object ctl; /* control object */

char *itm; /* item */

object r; /* control object */

This method is used to remove an item from a combo box while the dialog is active.
itm is the string to be removed. If the operation secceeded ctl is returned, otherwise
NULL is returned.

This method may only be used while a dialog is active. It should not be used prior to
performing (gPerform) a dialog or after the user has accepted or canceled the dialog.

Example:

object ctl;

gRemoveStr(ctl, "Some Option");

See also: RemoveInt::ComboBox, FindMode::ComboBox

[Required]Required::ComboBox

r = gRequired(ctl, mode);

object ctl; /* control object */

int mode; /* required mode */

object r; /* control object */

This method is used to determine whether or not the user is required to make a valid
selection prior to WDS allowing the acceptance of the dialog. If it is required and
the user does not make a valid selection, WDS will issue an error message and return
them to the control.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 165

mode is 1 to make it required and 0 otherwise.

Example:

object ctl;

gRequired(ctl, 1);

See also: CheckFunction::Control, CheckValue::Control

[SetFunction]SetFunction::ComboBox

r = gSetFunction(ctl, fun);

object ctl; /* control object */

int (*fun)(); /* check function */

ofun r; /* previous check function */

This method is used to associate a C function to a combo box such that if the user
double clicks an item in the combo box the C function will immediately get evoked.
The value returned by this method is the function, if any, which was previously
associated with the control.

The C function takes the following form:

int fun(object ctl, object dlg)

{

....

}

Where ctl is the control object, and dlg is the object representing the dialog the
control is associated with. The value returned by fun is ignored.

Example:

object ctl;

gSetFunction(ctl, fun);

See also: Perform, SetChgFunction

c© 1995-1996 Blake McBride

166 Dynace Windows Development System Manual

[SetShortValue]SetShortValue::ComboBox

r = gSetShortValue(ctl, val);

object ctl; /* control object */

int val; /* ctl value */

object r; /* control object */

This method is used to set the default selection associated with the control. It is
often used to set the initial value prior to performing a dialog.

val will be used as the ordinal value of the selected item. This value is a 0 based
index from the top of the list to the bottom.

Any previously associated object (via Value) will be disposed when the new value is
set.

Example:

object ctl;

gSetShortValue(ctl, 1);

See also: SetStringValue, SetValue

[SetStringValue]SetStringValue::ComboBox

r = gSetStringValue(ctl, val);

object ctl; /* control object */

char *val; /* ctl value */

object r; /* control object */

This method is used to set the default selection associated with the control. It is
often used to set the initial value prior to performing a dialog.

val will be used to select the option which matches the string.

Any previously associated object (via val) will be disposed when the new value is
set.

Example:

object ctl;

gSetStringValue(ctl, "The choice");

See also: SetShortValue, SetValue

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 167

[SetValue]SetValue::ComboBox

r = gSetValue(ctl, val);

object ctl; /* control object */

object val; /* ctl value */

object r; /* control object */

This method is used to set the default selection associated with the control. It is often
used to set the initial value prior to performing a dialog. val should be a Dynace
object which is an instance of either the String class or the ShortInteger class and
initialized to the value desired for the control.

If val is an instance of the ShortIntgeger class it will be used as the ordinal value
of the selected item. This value is a 0 based index from the top of the list to the
bottom.

If val is an instance of the String class it will be used to select the option which
matches the string represented by val.

Any previously associated object will be disposed when the new value is set. Also,
val will automatically be disposed when the control or associated dialog is disposed.

Example:

object ctl;

gSetValue(ctl, gNewWithInt(ShortInteger, 1));

or

gSetValue(ctl, gNewWithStr(String, "The choice"));

See also: SetShortValue, SetStringValue

[ShortValue]ShortValue::ComboBox

val = gShortValue(ctl);

object ctl; /* control object */

short val; /* ctl value */

This method is used to obtain a C short which represents the value associated with
the control. The returned value will represent the ordinal value of the choice made
by the user. This ordinal value is a zero based index from top to bottom. -1 indicates
that no choice was made.

c© 1995-1996 Blake McBride

168 Dynace Windows Development System Manual

Example:

object ctl;

short val;

val = gShortValue(ctl);

See also: ListIndex, Value, StringValue, Attach, SetValue

[StringValue]StringValue::ComboBox

val = gStringValue(ctl);

object ctl; /* control object */

char *val; /* ctl value */

This method is used to obtain a character string pointer which represents the value
associated with the control. The returned pointer will represent the text associated
with the user selected choices. It will point to "" if the user had not made a valid
selection.

The returned pointer will not be valid once the control object or associated dialog is
disposed.

Example:

object ctl;

char *val;

val = gStringValue(ctl);

See also: ShortValue, Value, ListIndex, Attach, SetValue

[Value]Value::ComboBox

val = gValue(ctl);

object ctl; /* control object */

object val; /* ctl value */

This method is used to obtain a Dynace object which represents the value associated
with the control. The object returned will be an instance of the String class. The
returned object will represent the text associated with the user selected choices. If
no selection was made the object will represent "".

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 169

This object will be disposed by WDS when the control object or associated dialog is
disposed.

Example:

object ctl, val;

val = gValue(ctl);

See also: ShortValue, StringValue, ValueAt, ListIndex, Attach, SetValue

[ValueAt]ValueAt::ComboBox

val = gValueAt(ctl, idx);

object ctl; /* control object */

int idx; /* index */

object val; /* value at idx */

This method is used to obtain a Dynace object which represents the text associated
with the line indexed by the zero based index idx. The object returned will be an
instance of the String class. If the index is out of range this method will return NULL.

This method may only be called when the dialog is active. The object returned must
be explicitly disposed when no longer needed.

See also: ShortValue, Value, ListIndex, SetValue

4.9.11 Scroll Bars

The ScrollBar class represents a control which allows the user to select a number between
two ranges via a linear, visually intuitive control. The range defaults to 0 to 100 and may
be controlled via ScrollBarRange.

The ScrollBar class is a subclass of Control and as such inherits all the functionality
associated with that class. This section only documents functionality particular to this
class.

Standard control arguments are documented in the section entitled “Standard Control
Method Arguments”.

[Attach]Attach::ScrollBar

r = gAttach(ctl, val);

object ctl; /* control object */

object val; /* ctl value */

object r; /* control object */

c© 1995-1996 Blake McBride

170 Dynace Windows Development System Manual

This method is used to associate an independent Dynace object with the state asso-
ciated with a control object. val should be an instance of the ShortInteger class.
This object will be automatically updated to reflect the position of the scroll bar.

This object (val) will never be disposed by WDS, even after the control or associated
dialog are disposed. Therefore, this is one way of gaining access to a control’s value
after the life of the control. It is the programmer’s responsibility to dispose of the
object when it is no longer needed.

Example:

object ctl, val;

val = gNewWithInt(ShortInteger, 0);

gAttach(ctl, val);

See also: Value, ShortValue, SetValue, SetShortValue, ScrollBarRange

[Increment]Increment::ScrollBar

r = gIncrement(ctl, val);

object ctl; /* control object */

int val; /* increment value */

object r; /* control object */

This method is used to increment the position of the scroll bar val points from its
current position. val may be negative or positive, which will determine the direction
of movement.

Example:

object ctl;

gIncrement(ctl, 10);

See also: SetShortValue, SetValue, ScrollBarRange

[NewCtl]NewCtl::ScrollBar

ctl = mNewCtl(ScrollBar, id);

unsigned id; /* control id */

object ctl; /* control object */

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 171

This method is used to create a new control object to be identified as id (see section
“Standard Control Method Arguments”). This method is mainly used internally.
A programmer would more often use AddControl::Dialog to create controls and
associated them to a dialog.

Example:

object ctl;

ctl = mNewCtl(ScrollBar, MY_SCROLLBAR);

See also: AddControl::Dialog, GetControl::Dialog

[ScrollBarRange]ScrollBarRange::ScrollBar

r = gScrollBarRange(ctl, min, max, pginc, lininc)

object ctl; /* control object */

int min; /* minimum range */

int max; /* maximum range */

int pginc; /* page increment */

int lineinc;/* line increment */

object r; /* control object */

This method is used to control the range and scrolling characteristics associated with
a given scroll bar control.

min and max are used to determine the range of the control. These are the values
which are returned when the control is at either end of its extremes. The default
values are 0 and 100 respectively.

pginc is used to control exactly how much the position of the scroll bar will change
when the user clicks the control in such a way as to cause a page jump in the position.
This is normally done by clicking in the area on either side of position indicating
element of the control. The default value for the variable is 10. It must be less than
the difference between max and min, and is normally larger than lineinc.

lineinc us used to control exactly how much the position of the scroll bar will
change when the user clicks the line increment arrows located on the extreme ends of
the control. The default value of this control is 2.

Example:

object ctl;

gScrollBarRange(ctl, 0, 100, 10, 2);

c© 1995-1996 Blake McBride

172 Dynace Windows Development System Manual

[SetShortValue]SetShortValue::ScrollBar

r = gSetShortValue(ctl, val);

object ctl; /* control object */

int val; /* ctl value */

object r; /* control object */

This method is used to set the value associated with a control. It is often used to
set the initial value prior to performing a dialog. val should be the value which
represents the desired position of the scroll bar. It must be between the minimum
and maximum range associated with the control.

Any previously associated value object (associated via SetValue) will be disposed
when the new value is set.

Example:

object ctl;

gSetShortValue(ctl, 50);

See also: SetValue, Increment, CtlShortValue::Dialog, ScrollBarRange

[SetValue]SetValue::ScrollBar

r = gSetValue(ctl, val);

object ctl; /* control object */

object val; /* ctl value */

object r; /* control object */

This method is used to set the value associated with a control. It is often used to set
the initial value prior to performing a dialog. val should be a Dynace object which
is an instance of the ShortInteger class and initialized to the value desired for the
control.

val must represent a number between the minimum and maximum range associated
with the scroll bar.

Any previously associated object will be disposed when the new value is set. Also,
val will automatically be disposed when the control or associated dialog is disposed.

Example:

object ctl;

gSetValue(ctl, gNewWithInt(ShortInteger, 50));

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 173

See also: SetShortValue, Increment, Value, ScrollBarRange

[ShortValue]ShortValue::ScrollBar

val = gShortValue(ctl);

object ctl; /* control object */

short val; /* ctl value */

This method is used to obtain a C short integer which represents the position of the
scroll bar. The returned value will represent the position of the scroll bar control.
This number will be between the minimum and maximum range associated with the
control via ScrollBarRange.

Example:

object ctl;

short val;

val = gShortValue(ctl);

See also: Value, Attach, SetShortValue, CtlShortValue::Dialog

[Value]Value::ScrollBar

val = gValue(ctl);

object ctl; /* control object */

object val; /* ctl value */

This method is used to obtain a Dynace object which represents the value associated
with the control. The object returned will be an instance of the ShortInteger class.
The returned object will represent the position of the scroll bar control. This number
will be between the minimum and maximum range associated with the control via
ScrollBarRange.

This object will be disposed by WDS when the control object or associated dialog is
disposed.

Example:

object ctl, val;

val = gValue(ctl);

See also: ShortValue, Attach, SetValue

c© 1995-1996 Blake McBride

174 Dynace Windows Development System Manual

4.9.12 Custom Controls

4.10 Cursors

The Cursor class (as well as its subclasses) are used to represent cursor objects. This class is
never used by an application. It is used to house the functionality common to its subclasses.
Therefore, this class documents functionality which is common to all of its subclasses.

Note that a more convenient mechanism for using cursors is provided by
LoadCursor::Window and LoadSystemCursor::Window

[Copy]Copy::Cursor

c = gCopy(csr);

object csr; /* cursor object */

object c; /* copy of cursor object */

This method is used to create a new cursor object which is a copy of a given cursor
object. The value of this is to be able to associate a cursor with multiple objects which
will automatically dispose of the cursor when they are disposed. If copies weren’t used
the second object referencing the cursor would reference a disposed cursor object.

Each cursor object must be disposed (either automatically or manually) when it is
no longer needed.

Example:

object c1, c2;

c2 = gCopy(c1);

See also: DeepCopy

[DeepCopy]DeepCopy::Cursor

This method performs the same function as Copy. See that method for details.

[DeepDispose]DeepDispose::Cursor

This method performs the same function as Dispose. See that method for details.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 175

[Dispose]Dispose::Cursor

r = gDispose(csr);

object csr; /* a cursor object */

object r; /* NULL */

This method is used to dispose of a cursor object when it is no longer needed. This
method is rarely needed due to the fact that when a window is disposed it automati-
cally calls this method to dispose of its associated cursor object.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object csr;

csr = gDispose(csr);

See also: DeepDispose

[Handle]Handle::Cursor

h = gHandle(csr);

object csr; /* cursor object */

HANDLE h; /* Windows handle */

This method is used to obtain the Windows internal handle associated with a cursor
object.

Note that this method may be used with most WDS objects in order to obtain the
internal handle that Windows normally associates with each type of object. See the
appropriate documentation.

Example:

object csr;

HCURSOR h;

h = gHandle(csr);

4.10.1 System Cursors

The SystemCursor class represents Windows predefined cursors. This class is a subclass of
Cursor and as such inherits most of its functionality from it. This section documents the
methods particular to this class. See the Cursor class for additional functionality.

c© 1995-1996 Blake McBride

176 Dynace Windows Development System Manual

[LoadSys]LoadSys::SystemCursor

csr = gLoadSys(SystemCursor, id);

char *id; /* cursor id */

object csr; /* cursor object */

This method is used to create a new object which represents one of the Windows
predefined cursors. id should be one of the Windows defined macros specifying
the desired cursor. It is defined in the Windows documentation under the function
LoadCursor and starts with IDC_.

Example:

object csr;

csr = gLoadSys(SystemCursor, IDC_IBEAM);

See also: LoadSystemCursor::Window, SetCursor::Application

4.10.2 External Cursors

The ExternalCursor class represents arbitrary application defined cursors. This class is
a subclass of Cursor and as such inherits most of its functionality from it. This section
documents the methods particular to this class. See the Cursor class for additional func-
tionality.

[Load]Load::ExternalCursor

csr = mLoad(ExternalCursor, id);

unsigned id; /* cursor id */

object csr; /* cursor object */

This method is used to load a programmer defined application specific cursor.

id is a programmer defined unsigned integer which identifies the cursor. This identifier
is normally a macro and defined through the resource editor.

The value returned is an object representing the cursor loaded, or NULL if the cursor
was not found.

Example:

object csr;

csr = mLoad(ExternalCursor, MY_CURSOR);

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 177

See also: LoadCursor::Window, SetCursor::Application

[LoadStr]LoadStr::ExternalCursor

csr = mLoadStr(ExternalCursor, id);

char *id; /* cursor id */

object csr; /* cursor object */

This method is used to load a programmer defined application specific cursor by
name.

id is a programmer defined name which identifies the cursor. This identifier is nor-
mally defined through the resource editor.

The value returned is an object representing the cursor loaded, or NULL if the cursor
was not found.

Example:

object csr;

csr = mLoadStr(ExternalCursor, "mycursor");

See also: LoadCursor::Window, SetCursor::Application, Use::Window

4.11 Icons

The Icon class (as well as its subclasses) are used to represent icon objects. This class is
never used by an application. It is used to house the functionality common to its subclasses.
Therefore, this class documents functionality which is common to all of its subclasses.

Note that a more convenient mechanism for using icons is provided by
LoadIcon::Window and LoadSystemIcon::Window

[Copy]Copy::Icon

c = gCopy(icn);

object icn; /* icon object */

object c; /* copy of icon object */

This method is used to create a new icon object which is a copy of a given icon object.
The value of this is to be able to associate a icon with multiple objects which will
automatically dispose of the icon when they are disposed. If copies weren’t used the
second object referencing the icon would reference a disposed icon object.

c© 1995-1996 Blake McBride

178 Dynace Windows Development System Manual

Each icon object must be disposed (either automatically or manually) when it is no
longer needed.

Example:

object i1, i2;

i2 = gCopy(i1);

See also: DeepCopy

[DeepCopy]DeepCopy::Icon

This method performs the same function as Copy. See that method for details.

[DeepDispose]DeepDispose::Icon

This method performs the same function as Dispose. See that method for details.

[Dispose]Dispose::Icon

r = gDispose(icn);

object icn; /* an icon object */

object r; /* NULL */

This method is used to dispose of an icon object when it is no longer needed. This
method is rarely needed due to the fact that when a window is disposed it automati-
cally calls this method to dispose of its associated icon object.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object icn;

icn = gDispose(icn);

See also: DeepDispose

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 179

[Handle]Handle::Icon

h = gHandle(icn);

object icn; /* icon object */

HANDLE h; /* Windows handle */

This method is used to obtain the Windows internal handle associated with an icon
object.

Note that this method may be used with most WDS objects in order to obtain the
internal handle that Windows normally associates with each type of object. See the
appropriate documentation.

Example:

object icn;

HICON h;

h = gHandle(icn);

4.11.1 System Icons

The SystemIcon class represents Windows predefined icons. This class is a subclass of Icon
and as such inherits most of its functionality from it. This section documents the methods
particular to this class. See the Icon class for additional functionality.

[LoadSys]LoadSys::SystemIcon

icn = gLoadSys(SystemIcon, id);

char *id; /* icon id */

object icn; /* icon object */

This method is used to create a new object which represents one of the Windows
predefined icons. id should be one of the Windows defined macros specifying the
desired icon. It is defined in the Windows documentation under the function LoadIcon

and starts with IDI_.

Example:

object icn;

icn = gLoadSys(SystemIcon, IDI_HAND);

See also: LoadSystemIcon::Window, SetIcon::Application

c© 1995-1996 Blake McBride

180 Dynace Windows Development System Manual

4.11.2 External Icons

The ExternalIcon class represents arbitrary application defined icons. This class is a sub-
class of Icon and as such inherits most of its functionality from it. This section documents
the methods particular to this class. See the Icon class for additional functionality.

[Load]Load::ExternalIcon

icn = mLoad(ExternalIcon, id);

unsigned id; /* icon id */

object icn; /* icon object */

This method is used to load a programmer defined application specific icon.

id is a programmer defined unsigned integer which identifies the icon. This identifier
is normally a macro and defined through the resource editor.

The value returned is an object representing the icon loaded, or NULL if the icon was
not found.

Example:

object icn;

icn = mLoad(ExternalIcon, MY_ICON);

See also: LoadIcon::Window, SetIcon::Application

[LoadStr]LoadStr::ExternalIcon

icn = mLoadStr(ExternalIcon, id);

char *id; /* icon id */

object icn; /* icon object */

This method is used to load a programmer defined application specific icon by name.

id is a programmer defined name which identifies the icon. This identifier is normally
defined through the resource editor.

The value returned is an object representing the icon loaded, or NULL if the icon was
not found.

Example:

object icn;

icn = mLoadStr(ExternalIcon, "myicon");

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 181

See also: LoadIcon::Window, SetIcon::Application, Use::Window

4.12 Fonts

The Font class (as well as its subclasses) are used to represent font objects. This class is
never used by an application. It is used to house the functionality common to its subclasses.
Therefore, this class documents functionality which is common to all of its subclasses.

Note that a more convenient mechanism for using fonts is provided by
LoadFont::Window, LoadSystemFont::Window, LoadFont::Printer, and
LoadSystemFont::Printer.

[AveCharWidth]AveCharWidth::Font

r = gAveCharWidth(fnt);

object fnt; /* a font object */

int r; /* ave char width */

This method is used to gain access to the average character width associated with a
particular font.

Example:

object fnt;

int cw;

cw = gAveCharWidth(fnt);

See also: LineHeight, GetTM

[Copy]Copy::Font

c = gCopy(fnt);

object fnt; /* font object */

object c; /* copy of font object */

This method is used to create a new font object which is a copy of a given font object.
The value of this is to be able to associate a font with multiple objects which will
automatically dispose of the font when they are disposed. If copies weren’t used the
second object referencing the font would reference a disposed font object.

Each font object must be disposed (either automatically or manually) when it is no
longer needed.

c© 1995-1996 Blake McBride

182 Dynace Windows Development System Manual

Example:

object f1, f2;

f2 = gCopy(f1);

See also: DeepCopy

[DeepCopy]DeepCopy::Font

This method performs the same function as Copy. See that method for details.

[DeepDispose]DeepDispose::Font

This method performs the same function as Dispose. See that method for details.

[Dispose]Dispose::Font

r = gDispose(fnt);

object fnt; /* a font object */

object r; /* NULL */

This method is used to dispose of a font object when it is no longer needed. This
method is rarely needed due to the fact that when a window or printer object is
disposed it automatically calls this method to dispose of its associated font object.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object fnt;

fnt = gDispose(fnt);

See also: DeepDispose

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 183

[GetTM]GetTM::Font

r = gGetTM(fnt, tm);

object fnt; /* a font object */

TEXTMETRIC *tm; /* font metrics */

object r; /* fnt */

This method is used to gain access to the font metrics associated with a particular
font.

Example:

object fnt;

TEXTMETRIC tm;

gGetTM(fnt, &tm);

See also: LineHeight, AveCharWidth

[Handle]Handle::Font

h = gHandle(fnt);

object fnt; /* font object */

HANDLE h; /* Windows handle */

This method is used to obtain the Windows internal handle associated with a font
object.

Note that this method may be used with most WDS objects in order to obtain the
internal handle that Windows normally associates with each type of object. See the
appropriate documentation.

Example:

object fnt;

HGDIOBJ h;

h = gHandle(fnt);

[LineHeight]LineHeight::Font

r = gLineHeight(fnt);

object fnt; /* a font object */

int r; /* line height */

c© 1995-1996 Blake McBride

184 Dynace Windows Development System Manual

This method is used to gain access to the line height associated with a particular
font. This number is equal to the height of the largest character in the font plus a
reasonable amount of space to separate lines containing the font.

Example:

object fnt;

int lh;

lh = gLineHeight(fnt);

See also: AveCharWidth, GetTM

4.12.1 System Fonts

The SystemFont class represents Windows predefined fonts. This class is a subclass of Font
and as such inherits most of its functionality from it. This section documents the methods
particular to this class. See the Font class for additional functionality.

[Load]Load::SystemFont

fnt = mLoad(SystemFont, id);

unsigned id; /* icon id */

object fnt; /* icon object */

This method is used to create a new object which represents one of the Windows pre-
defined fonts. id should be one of the Windows defined macros specifying the desired
font. It is defined in the Windows documentation under the function GetStockObject

and ends with _FONT.

Example:

object fnt;

fnt = mLoad(SystemFont, ANSI_FIXED_FONT);

See also: LoadSystemFont::Window, LoadSystemFont::Printer,

SetFont::Application, Use::Window, Use::Printer

4.12.2 External Fonts

The ExternalFont class represents arbitrary external fonts. This class is a subclass of Font
and as such inherits most of its functionality from it. This section documents the methods
particular to this class. See the Font class for additional functionality.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 185

[Indirect]Indirect::ExternalFont

fnt = gIndirect(ExternalFont, lf);

LOGFONT *lf; /* logical font */

object fnt; /* font object */

This method is used to find and load a font which most closely matches the parameters
indicated by lf. The structure of lf is fully described in the Windows documentation
under the structure LOGFONT.

The value returned is an object representing the font loaded, or NULL if the font was
not found.

Example:

LOGFONT lf;

object fnt;

/* initialize lf */

fnt = gIndirect(ExternalFont, &lf);

See also: LoadFont::Window, LoadFont::Printer, SetFont::Application,

Use::Window, Use::Printer

[New]New::ExternalFont

fnt = vNew(ExternalFont, nm, ps);

char *nm; /* font name */

int ps; /* point size */

object fnt; /* font object */

This method is used to load an arbitrary font by name at any point size. nm is the full
name of the font as it appears when you list the available fonts via the control-panel
/ fonts Windows utility, minus the font type in parentheses. ps indicates the desired
point size.

The value returned is an object representing the font loaded, or NULL if the font was
not found.

Note that nm may also be a Dynace object cast as a (char *).

Example:

object fnt;

fnt = vNew(ExternalFont, "Times New Roman", 12);

c© 1995-1996 Blake McBride

186 Dynace Windows Development System Manual

See also: LoadFont::Window, LoadFont::Printer, SetFont::Application,

Use::Window, Use::Printer

4.13 Brushes

The Brush class (as well as its subclasses) are used to represent brush objects. This class is
never used by an application. It is used to house the functionality common to its subclasses.
Therefore, this class documents functionality which is common to all of its subclasses.

[Color]Color::Brush

c = gColor(bsh);

object bsh; /* brush object */

COLORREF c; /* brush color */

This method is used to obtain the color associated with a brush.

Example:

object bsh;

COLORREF c;

c = gColor(bsh);

[Copy]Copy::Brush

c = gCopy(bsh);

object bsh; /* brush object */

object c; /* copy of brush object */

This method is used to create a new brush object which is a copy of a given brush
object. The value of this is to be able to associate a brush with multiple objects which
will automatically dispose of the brush when they are disposed. If copies weren’t used
the second object referencing the brush would reference a disposed brush object.

Each brush object must be disposed (either automatically or manually) when it is no
longer needed.

Example:

object b1, b2;

b2 = gCopy(b1);

See also: DeepCopy

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 187

[DeepCopy]DeepCopy::Brush

This method performs the same function as Copy. See that method for details.

[DeepDispose]DeepDispose::Brush

This method performs the same function as Dispose. See that method for details.

[Dispose]Dispose::Brush

r = gDispose(bsh);

object bsh; /* a brush object */

object r; /* NULL */

This method is used to dispose of a brush object when it is no longer needed. This
method is rarely needed due to the fact that when a window or printer object is
disposed it automatically calls this method to dispose of its associated brush object.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object bsh;

bsh = gDispose(bsh);

See also: DeepDispose

[Handle]Handle::Brush

h = gHandle(bsh);

object bsh; /* brush object */

HANDLE h; /* Windows handle */

This method is used to obtain the Windows internal handle associated with a brush
object.

Note that this method may be used with most WDS objects in order to obtain the
internal handle that Windows normally associates with each type of object. See the
appropriate documentation.

c© 1995-1996 Blake McBride

188 Dynace Windows Development System Manual

Example:

object bsh;

HBRUSH h;

h = gHandle(bsh);

4.13.1 Stock Brushes

The StockBrush class represents common Windows defined brushes. This class is a subclass
of Brush and as such inherits most of its functionality from it. This section documents the
methods particular to this class. See the Brush class for additional functionality.

[New]New::StockBrush

bsh = vNew(StockBrush, id);

unsigned id; /* brush id */

object bsh; /* brush object */

This method is used to load one of the Windows pre-defined brushes. The available
options are macros documented in the Windows documentation under the function
GetStockObject and end with _BRUSH.

The value returned is an object representing the brush loaded, or NULL if the brush
was not found.

Example:

object bsh;

bsh = vNew(StockBrush, GRAY_BRUSH);

See also: TextBrush::Window, BackBrush::Window, Use::Window, Use::Printer

4.13.2 Solid Brushes

The SolidBrush class represents arbitrary application defined brushes. This class is a sub-
class of Brush and as such inherits most of its functionality from it. This section documents
the methods particular to this class. See the Brush class for additional functionality.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 189

[New]New::SolidBrush

bsh = vNew(SolidBrush, red, green, blue);

int red;

int green;

int blue;

object bsh; /* brush object */

This method is used to create a solid colored brush with specific colors. Each color
argument specifies a number between 0 and 255 and indicates the intensity of the
related color. If all three are 0 you get black, and all three at 255 is white.

The value returned is an object representing the brush created, or NULL if the brush
was not created.

Example:

object bsh;

bsh = vNew(SolidBrush, 255, 0, 0);

See also: TextBrush::Window, BackBrush::Window, Use::Window, Use::Printer

4.13.3 System Brushes

The SystemBrush class represents brushes which are those colors which were selected by
the user as global to their Windows environment. The programmer may select, for example,
the color the user chose for background windows.

This class is a subclass of Brush and as such inherits most of its functionality from
it. This section documents the methods particular to this class. See the Brush class for
additional functionality.

[New]New::SystemBrush

bsh = vNew(SystemBrush, id);

unsigned id; /* brush id */

object bsh; /* brush object */

This method is used to load one of the Windows user defined brushes. The available
options are macros documented in the Windows documentation under the function
GetSysColor.

The value returned is an object representing the brush loaded, or NULL if the brush
was not found.

c© 1995-1996 Blake McBride

190 Dynace Windows Development System Manual

Example:

object bsh;

bsh = vNew(SystemBrush, COLOR_ACTIVEBORDER);

See also: TextBrush::Window, BackBrush::Window, Use::Window, Use::Printer

4.13.4 Hatch Brushes

The HatchBrush class represents arbitrary application defined brushes with a specified
pattern. This class is a subclass of Brush and as such inherits most of its functionality from
it. This section documents the methods particular to this class. See the Brush class for
additional functionality.

[New]New::HatchBrush

bsh = vNew(HatchBrush, red, green, blue, style);

int red;

int green;

int blue;

int style; /* brush pattern */

object bsh; /* brush object */

This method is used to create a colored brush with specific colors and pattern Each
color argument specifies a number between 0 and 255 and indicates the intensity of
the related color. If all three are 0 you get black, and all three at 255 is white.

The style parameter indicates the specific pattern for the brush. This param-
eter is a macro documented in the Windows documentation under the function
CreateHatchBrush and begin with HS_.

The value returned is an object representing the brush created, or NULL if the brush
was not created.

Example:

object bsh;

bsh = vNew(HatchBrush, 255, 10, 10, HS_VERTICAL);

See also: TextBrush::Window, BackBrush::Window, Use::Window, Use::Printer

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 191

4.14 Pens

The Pen class (as well as its subclasses) are used to represent pen objects. This class is
never used by an application. It is used to house the functionality common to its subclasses.
Therefore, this class documents functionality which is common to all of its subclasses.

[Color]Color::Pen

c = gColor(pn);

object pn; /* pen object */

COLORREF c; /* pen color */

This method is used to obtain the color associated with a pen.

Example:

object pn;

COLORREF c;

c = gColor(pn);

[Copy]Copy::Pen

c = gCopy(pn);

object pn; /* pen object */

object c; /* copy of pen object */

This method is used to create a new pen object which is a copy of a given pen object.
The value of this is to be able to associate a pen with multiple objects which will
automatically dispose of the pen when they are disposed. If copies weren’t used the
second object referencing the pen would reference a disposed pen object.

Each pen object must be disposed (either automatically or manually) when it is no
longer needed.

Example:

object p1, p2;

p2 = gCopy(p1);

See also: DeepCopy

c© 1995-1996 Blake McBride

192 Dynace Windows Development System Manual

[DeepCopy]DeepCopy::Pen

This method performs the same function as Copy. See that method for details.

[DeepDispose]DeepDispose::Pen

This method performs the same function as Dispose. See that method for details.

[Dispose]Dispose::Pen

r = gDispose(pn);

object pn; /* a pen object */

object r; /* NULL */

This method is used to dispose of a pen object when it is no longer needed. This
method is rarely needed due to the fact that when a window or printer object is
disposed it automatically calls this method to dispose of its associated pen object.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object pn;

pn = gDispose(pn);

See also: DeepDispose

[Handle]Handle::Pen

h = gHandle(pn);

object pn; /* pen object */

HANDLE h; /* Windows handle */

This method is used to obtain the Windows internal handle associated with a pen
object.

Note that this method may be used with most WDS objects in order to obtain the
internal handle that Windows normally associates with each type of object. See the
appropriate documentation.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 193

Example:

object pn;

HPEN h;

h = gHandle(pn);

4.14.1 Stock Pens

The StockPen class represents common Windows defined pens. This class is a subclass
of Pen and as such inherits most of its functionality from it. This section documents the
methods particular to this class. See the Pen class for additional functionality.

[New]New::StockPen

pn = vNew(StockPen, id);

unsigned id; /* pen id */

object pn; /* pen object */

This method is used to load one of the Windows pre-defined pens. The available
options are macros documented in the Windows documentation under the function
GetStockObject and end with _PEN.

The value returned is an object representing the pen loaded, or NULL if the pen was
not found.

Example:

object pn;

pn = vNew(StockPen, BLACK_PEN);

See also: Use::Printer

4.14.2 Custom Pens

The CustomPen class represents arbitrary application defined pens with a specified pattern
and width. This class is a subclass of Pen and as such inherits most of its functionality
from it. This section documents the methods particular to this class. See the Pen class for
additional functionality.

c© 1995-1996 Blake McBride

194 Dynace Windows Development System Manual

[New]New::CustomPen

pn = vNew(CustomPen, red, green, blue, style, width);

int red;

int green;

int blue;

int style; /* pen pattern */

int width; /* pen line width */

object pn; /* pen object */

This method is used to create a colored pen with specific colors, pattern and line
width. Each color argument specifies a number between 0 and 255 and indicates the
intensity of the related color. If all three are 0 you get black, and all three at 255 is
white.

The style parameter indicates the specific pattern for the pen. This parameter is
a macro documented in the Windows documentation under the function CreatePen

and begin with PS_. The width parameter specifies the width of the line in logical
units.

The value returned is an object representing the pen created, or NULL if the pen was
not created.

Example:

object pn;

pn = vNew(CustomPen, 255, 10, 10, PS_DASH, 5);

See also: Use::Printer

4.15 Help System

The HelpSystem class is used to support the standard Windows help system. In addition to
being able to support arbitrary evocation of help messages, this class is used by other WDS
classes in order to provide complete support for context sensitive help to any level. Each
class provides mechanisms in order to associated context sensitive help text to windows,
dialogs, menus or controls.

Most classes which provide context sensitive help support have a method called SetTopic

which is used to associate a particular topic within a given context.

All the methods in this class are class methods. This means that the first argument to
all the methods will be HelpSystem and there is never an instance object to keep track of.

See the appropriate examples for detailed information on how to create the actual help
file.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 195

[HelpContents]HelpContents::HelpSystem

r = gHelpContents(HelpSystem);

object r; /* HelpSystem */

This method is used to display the contents screen of the help file. HelpSystem will
be returned if the request is successful and NULL otherwise.

Example:

gHelpContents(HelpSystem);

See also: HelpFile, HelpTopic, HelpInContext

[HelpFile]HelpFile::HelpSystem

r = gHelpFile(HelpSystem, hf);

char *hf; /* help file */

object r; /* HelpSystem */

This method is used to determine the external file to be used for all help references.
This must be done prior to any of the other help facilities use. The help file will not
be opened until one of the help display methods is evoked. The application must also
have a main window prior to the evocation of the help system. The help system will
automatically terminate when the user terminates the application.

Example:

gHelpFile(HelpSystem, "helpfile.hlp");

See also: HelpContents

[HelpInContext]HelpInContext::HelpSystem

r = gHelpInContext(HelpSystem);

object r; /* HelpSystem */

This method is used to display the help screen associated with the current context (set
with SetTopic). If no context is set the help contents will be displayed. HelpSystem
will be returned if the request is successful and NULL otherwise.

Note that SetTopic and HelpInContext, although available to an application pro-
gram, are mainly used internally by WDS in order to support the context sensitive

c© 1995-1996 Blake McBride

196 Dynace Windows Development System Manual

help facility provided by the Window, Dialog, Menu, and Control classes. See the
SetTopic method associated with those classes.

Example:

gHelpInContext(HelpSystem);

See also: HelpFile, SetTopic, HelpContents, HelpTopic

[HelpTopic]HelpTopic::HelpSystem

r = gHelpTopic(HelpSystem, tpc);

char *tpc; /* help topic */

object r; /* HelpSystem */

This method is used to display the help screen associated with a given topic.
HelpSystem will be returned if the request is successful and NULL otherwise.

Example:

gHelpTopic(HelpSystem, "fileOpen");

See also: HelpFile, HelpContents, HelpInContext

[SetTopic]SetTopic::HelpSystem

r = gSetTopic(HelpSystem, tpc);

char *tpc; /* help topic */

char *r; /* previous topic */

This method is used to set the current help topic context. It is used by HelpInContext
to display the help text associated with the current context. The previous help topic
will be returned.

Note that SetTopic and HelpInContext, although available to an application pro-
gram, are mainly used internally by WDS in order to support the context sensitive
help facility provided by the Window, Dialog, Menu, and Control classes. See the
SetTopic method associated with those classes.

Example:

gSetTopic(HelpSystem, "someTopic");

See also: HelpFile, HelpInContext, HelpContents, HelpTopic

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 197

4.16 Common Dialogs

The CommonDialog class is only used to group the common dialogs which are all subclasses
of this class. There is no specific functionality associated with this class. See the particular
subclasses for documentation.

4.16.1 File Selection Dialog

The FileDialog class provides a standard and convenient method of querying the user for
a file name. The user is able to browse the disk or enter a new file name.

The fd parameter used by all methods in this class refer to the file dialog object returned
by the New method.

[AppendFilter]AppendFilter::FileDialog

r = gAppendFilter(fd, ttl, fltr);

object fd; /* file dialog */

char *ttl; /* title */

char *fltr; /* file filter */

object r; /* file dialog */

This method is used to group files according to some file naming criteria for user
selection. There may be any number of groups. The user selects the group they are
interested in and are presented with a list of files which meet the criteria.

ttl is the name of the group which the user is presented with. fltr is the file filter
and may consist of several filters, each separated with a semicolon.

This method may be called any number of times to create several groups.

Example:

object fd;

gAppendFilter(fd, "Document Files", "*.txt;*.doc");

gAppendFilter(fd, "Source Files", "*.c;*.h");

See also: SetFile, InitialDir, DefExt

[DefExt]DefExt::FileDialog

r = gDefExt(fd, ext);

object fd; /* file dialog */

char *ext; /* file extension */

object r; /* file dialog */

c© 1995-1996 Blake McBride

198 Dynace Windows Development System Manual

This method is used to set the default file extension which will be displayed for the
user. It should not contain a period.

Example:

object fd;

gDefExt(fd, "txt");

See also: SetFile, AppendFilter

[Dispose]Dispose::FileDialog

r = gDispose(fd);

object fd; /* file dialog */

object r; /* NULL */

This method is used to dispose of a file dialog object. This method must be called to
dispose of the dialog when it is no longer needed.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object fd;

fd = gDispose(fd);

[GetFile]GetFile::FileDialog

fname = gGetFile(fd);

object fd; /* file dialog */

char *fname; /* file name */

This method is used to obtain the file name the user selected once the file dialog has
been completed. This value will include the full path, file name and extension. If
multiple selections are allowed, the path will be returned, then a space delimited list
of selected file names.

Example:

object fd;

char *files;

files = gGetFile(fd);

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 199

See also: GetOpenFile, GetSaveFile, SetFile, SetFlags

[InitialDir]InitialDir::FileDialog

r = gInitialDir(fd, pth);

object fd; /* file dialog */

char *pth; /* initial path */

object r; /* file dialog */

This method is used to set the initial path associated with the file dialog. If no initial
path is set, the system will use the current directory of the application.

Example:

object fd;

gInitialDir(fd, "c:\\mypath");

See also: SetFile, AppendFilter, DefExt

[New]New::FileDialog

fd = vNew(FileDialog, pwind);

object pwind; /* parent window */

object fd; /* file dialog */

This method is used to create a new file dialog object. It will not be displayed until
the appropriate method is called. The object returned must be disposed when it no
longer needed.

The pwind parameter refers to either the application’s main window or any child
window object.

Example:

object fd, pwind;

fd = vNew(FileDialog, pwind);

See also: Dispose, GetOpenFile, GetSaveFile

c© 1995-1996 Blake McBride

200 Dynace Windows Development System Manual

[GetOpenFile]GetOpenFile::FileDialog

r = gGetOpenFile(fd);

object fd; /* file dialog */

int r; /* return status */

This method is used to actually display the dialog and obtain user input. The type
of file dialog presented will be one in which the user must select a pre-existing file,
presumably to open.

The return value is non-zero if the user makes a valid selection and zero if the user
did not make a selection or if an error occurred.

Example:

object fd;

int r;

r = gGetOpenFile(fd);

See also: GetSaveFile

[GetSaveFile]GetSaveFile::FileDialog

r = gGetSaveFile(fd);

object fd; /* file dialog */

int r; /* return status */

This method is used to actually display the dialog and obtain user input. The type
of file dialog presented will be one in which the user may select a pre-existing file or
type in a new name, presumably to save some data to.

The return value is non-zero if the user makes a valid selection and zero if the user
did not make a selection or if an error occurred.

Example:

object fd;

int r;

r = gGetSaveFile(fd);

See also: GetOpenFile

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 201

[SetFile]SetFile::FileDialog

r = gSetFile(fd, fname);

object fd; /* file dialog */

char *fname; /* file name */

object r; /* file dialog */

This method is used to set the default file name displayed when the file dialog is
displayed.

Example:

object fd;

gSetFile(fd, "somefile.txt");

See also: InitialDir, GetFile, SetFlags, DefExt

[SetFlags]SetFlags::FileDialog

r = gSetFlags(fd, flgs);

object fd; /* file dialog */

DWORD flgs; /* flags */

object r; /* file dialog */

This method is used to set the option flags associated with a file dialog. The available
flags are fully documented in the Windows documentation under the OPENFILENAME

structure and all begin with OFN_.

Example:

object fd;

gSetFlags(fd, OFN_ALLOWMULTISELECT);

See also: SetFile, DefExt

[SetTitle]SetTitle::FileDialog

r = gSetTitle(fd, ttl);

object fd; /* file dialog */

char *ttl; /* dialog title */

object r; /* file dialog */

c© 1995-1996 Blake McBride

202 Dynace Windows Development System Manual

This method is used to set the text which appears at the top of the file dialog. If no
value is set the system will use appropriate defaults.

Example:

object fd;

gSetTitle(fd, "Select File");

See also: SetFile, AppendFilter, DefExt

4.16.2 Printer Selection and Configuration Dialog

The PrintDialog class is used to present the user with a standard and convenient dialog
for printer selection and configuration.

This class is seldom needed because the Printer class has the QueryPrinter::Printer
method which automatically calls this class for printer information. However, this class
may be used independently in order to have better control of user options.

The pd parameter used by all methods in this class refer to the print dialog object
returned by the New method.

[Copies]Copies::PrintDialog

cp = gCopies(fd);

object fd; /* file dialog */

int cp; /* copies */

This method is used to obtain the number of copies selected by the user subsequent
to calling Perform.

Example:

object fd;

int cp;

cp = gCopies(fd);

See also: Perform, SetFlags, GetPageRange

[Dispose]Dispose::PrintDialog

r = gDispose(pd);

object pd; /* print dialog */

object r; /* NULL */

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 203

This method is used to dispose of a print dialog object. This must be done when it
is no longer needed.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object pd;

pd = gDispose(pd);

See also: New, Perform

[GetPageRange]GetPageRange::PrintDialog

r = gGetPageRange(fd, start, end);

object fd; /* file dialog */

int *start; /* starting page number */

int *end; /* ending page number */

object r; /* file dialog */

This method is used to obtain the page range selected by the user subsequent to
calling Perform.

Example:

object fd;

int start, end;

gGetPageRange(fd, &start, &end);

See also: Perform, SetFlags, Copies

[Handle]Handle::PrintDialog

hdc = gHandle(pd);

object pd; /* print dialog */

HANDLE hdc; /* handle to dc */

This method is used to obtain the device context handle associated with the print
dialog. It will only be valid after performing the dialog (via Perform). If the handle
is obtained via this method, the Dispose method will not release the handle as it
would normally do. This is done so the device context can be used for the printer to

c© 1995-1996 Blake McBride

204 Dynace Windows Development System Manual

be opened. If the handle as obtained it is the application’s responsibility to release
the handle when it is no longer needed. This may be done via the DeleteDC Windows
function.

This method is mainly used internally to WDS and is only made available for conve-
nience.

Example:

object pd;

HDC hdc;

hdc = gHandle(pd);

See also: Perform

[New]New::PrintDialog

pd = vNew(PrintDialog, pwind);

object pwind; /* parent window */

object pd; /* print dialog */

This method is used to create a new print dialog object. It will not be displayed until
the appropriate method is called. The object returned must be disposed when it no
longer needed.

The pwind parameter refers to either the application’s main window or any child
window object.

Example:

object pd, pwind;

pd = vNew(PrintDialog, pwind);

See also: Perform, Dispose

[Perform]Perform::PrintDialog

r = gPerform(pd);

object pd; /* print dialog */

int r; /* return status */

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 205

This method is used to actually present the user with the print dialog. The return
value is non-zero if the user appropriately selects a printer. Zero will be returned if
the user cancels the dialog or an error occurs.

Example:

object pd;

int r;

r = gPerform(pd);

See also: New, Dispose

[SetFlags]SetFlags::PrintDialog

r = gSetFlags(pd, flgs);

object pd; /* print dialog */

DWORD flgs; /* flags */

object r; /* print dialog */

This method is used to set the option flags associated with a print dialog. The avail-
able flags are fully documented in the Windows documentation under the PRINTDLG

structure and all begin with PD_.

Example:

object pd;

gSetFlags(pd, PD_ALLPAGES);

4.16.3 Color Selection Dialog

The ColorDialog class is used to present the user with a standard and convenient dialog
for color selection and configuration.

The cd parameter used by all methods in this class refer to the color dialog object
returned by the New method.

[Dispose]Dispose::ColorDialog

r = gDispose(cd);

object cd; /* color dialog */

object r; /* NULL */

This method is used to dispose of a color dialog object. This must be done when it
is no longer needed.

c© 1995-1996 Blake McBride

206 Dynace Windows Development System Manual

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object cd;

cd = gDispose(cd);

See also: New, Perform

[GetColor]GetColor::ColorDialog

clr = gGetColor(cd);

object cd; /* color dialog */

COLORREF clr; /* selected color */

This method is used to obtain the users color selection subsequent to executing
Perform.

Example:

object cd;

COLORREF clr;

clr = gGetColor(cd);

See also: Perform, SetColor, GetCustomColorPtr

[GetCustomColorPtr]GetCustomColorPtr::ColorDialog

cv = gGetCustomColorPtr(cd);

object cd; /* color dialog */

COLORREF *cv; /* color vector */

This method is used to obtain a pointer to 16 COLORREFs selected as custom colors by
the user. This vector should be inspected subsequent to calling Perform and prior to
calling Dispose. One Dispose is called, the returned pointer will no longer be valid.

Example:

object cd;

COLORREF *cv;

cv = gGetCustomColorPtr(cd);

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 207

See also: Perform, GetColor

[New]New::ColorDialog

cd = vNew(ColorDialog, pwind);

object pwind; /* parent window */

object cd; /* color dialog */

This method is used to create a new color dialog object. It will not be displayed until
the appropriate method is called. The object returned must be disposed when it no
longer needed.

The pwind parameter refers to either the application’s main window or any child
window object.

Example:

object cd, pwind;

cd = vNew(ColorDialog, pwind);

See also: Perform, Dispose

[Perform]Perform::ColorDialog

r = gPerform(cd);

object cd; /* color dialog */

int r; /* return status */

This method is used to actually present the user with the color selection dialog. The
return value is non-zero if the user appropriately selects a color. Zero will be returned
if the user canceled the dialog or an error occurred.

Example:

object cd;

int r;

r = gPerform(cd);

See also: New, Dispose

c© 1995-1996 Blake McBride

208 Dynace Windows Development System Manual

[SetColor]SetColor::ColorDialog

r = gSetColor(cd, clr);

object cd; /* color dialog */

COLORREF clr; /* selected color */

object r; /* color dialog */

This method is used to set the initial color associated with the color selection dialog.
The Windows RGB macro may be used to obtain a valid COLORREF.

Example:

object cd;

COLORREF clr;

gSetColor(cd, RGB(255, 0 ,0));

See also: Perform, GetColor

[SetFlags]SetFlags::ColorDialog

r = gSetFlags(cd, flgs);

object cd; /* color dialog */

DWORD flgs; /* flags */

object r; /* color dialog */

This method is used to set the option flags associated with a color dialog. The
available flags are fully documented in the Windows documentation under the
CHOOSECOLOR structure and all begin with CC_.

Example:

object cd;

gSetFlags(cd, CC_FULLOPEN);

4.16.4 Font Selection Dialog

The FontDialog class is used to present the user with a standard and convenient dialog for
font selection.

The fd parameter used by all methods in this class refer to the font dialog object returned
by the New method.

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 209

[Dispose]Dispose::FontDialog

r = gDispose(fd);

object fd; /* font dialog */

object r; /* NULL */

This method is used to dispose of a font dialog object. This must be done when it is
no longer needed.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object fd;

fd = gDispose(fd);

See also: New, Perform

[Font]Font::FontDialog

fnt = gFont(fd);

object fd; /* font dialog */

object font; /* font object */

This method is used to create a font object representing the font the user selected.
This font object will be an instance of the ExternalFont class and must be disposed
(either directly or indirectly) when it is no longer needed. This method should only
be called subsequent to Perform. NULL will be returned if no font was selected or the
font object could not be created.

Example:

object fd, fnt;

fnt = gFont(fd);

See also: Perform

c© 1995-1996 Blake McBride

210 Dynace Windows Development System Manual

[GetColor]GetColor::FontDialog

clr = gGetColor(fd);

object fd; /* font dialog */

COLORREF clr; /* color */

This method is used to get the user selected color once Perform has been called. This
will only work if the CF_EFFECTS option is set.

Example:

object fd;

COLORREF clr;

clr = gGetColor(fd);

See also: SetFlags, SetColor, Perform

[New]New::FontDialog

fd = vNew(FontDialog, pwind);

object pwind; /* parent window */

object fd; /* font dialog */

This method is used to create a new font dialog object. It will not be displayed until
the appropriate method is called. The object returned must be disposed when it no
longer needed.

The pwind parameter refers to either the application’s main window or any child
window object.

Example:

object fd, pwind;

fd = vNew(FontDialog, pwind);

See also: Perform, Dispose

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 211

[Perform]Perform::FontDialog

r = gPerform(fd);

object fd; /* font dialog */

int r; /* return status */

This method is used to actually present the user with the font selection dialog. The
return value is non-zero if the user appropriately selects a font. Zero will be returned
if the user canceled the dialog or an error occurred.

Example:

object fd;

int r;

r = gPerform(fd);

See also: New, Dispose

[SetColor]SetColor::FontDialog

clr = gSetColor(fd);

object fd; /* font dialog */

COLORREF clr; /* color */

This method is used to set the initial color of the user color selection portion of
the font dialog. This will only work if the CF_EFFECTS option is set. The Windows
supplied RGB macro may be used to create the COLORREF.

Example:

object fd;

gSetColor(fd, RGB(255, 0, 0));

See also: SetFlags, GetColor, Perform

[SetFlags]SetFlags::FontDialog

r = gSetFlags(fd, flgs);

object fd; /* font dialog */

DWORD flgs; /* flags */

object r; /* font dialog */

c© 1995-1996 Blake McBride

212 Dynace Windows Development System Manual

This method is used to set the option flags associated with a font dialog. The available
flags are fully documented in the Windows documentation under the CHOOSEFONT

structure and all begin with CF_.

Example:

object fd;

gSetFlags(fd, CF_ANSIONLY);

4.17 Dynamic Link Libraries

The DynamicLibrary class is used to support the dynamic link library (DLL) facility of
Windows. This class provides a convenient mechanism to load, free and use DLLs.

Throughout this section dl will refer to the object which was returned by the
LoadLibrary method and represents a DLL.

[DeepDispose]DeepDispose::DynamicLibrary

This method performs the same function as Dispose. See that method for details.

[Dispose]Dispose::DynamicLibrary

r = gDispose(dl);

object dl; /* a DLL object */

object r; /* NULL */

This method is used to release and dispose of a DLL object when it is no longer
needed. All DLL objects are automatically released by WDS when the application
terminates.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object dl;

dl = gDispose(dl);

See also: FreeAll, DeepDispose

c© 1995-1996 Blake McBride

Chapter 4: Library Reference 213

[FindStr]FindStr::DynamicLibrary

dl = gFindStr(DynamicLibrary, fname);

char *fname; /* DLL file name */

object dl; /* DLL object */

This class method is used to obtain the DLL object (previously loaded via
LoadLibrary) via its associated file name. This won’t work after the DLL object is
disposed.

Example:

object dl;

dl = gFindStr(DynamicLibrary, "mydll.dll");

See also: LoadLibrary

[FreeAll]FreeAll::DynamicLibrary

gFreeAll(DynamicLibrary);

This class method is used to release and dispose of all DLL objects. It is automatically
called by WDS when the application terminates.

Example:

gFreeAll(DynamicLibrary);

See also: Dispose, DeepDispose

[GetProcAddress]GetProcAddress::DynamicLibrary

fun = gGetProcAddress(dl, fname);

object dl; /* DLL object */

char *fname; /* function name */

FARPROC fun; /* pointer to function */

This method is used to obtain a pointer to a function within a DLL. The DLL function
may then be evoked with the pointer.

c© 1995-1996 Blake McBride

214 Dynace Windows Development System Manual

Example:

FARPROC fun;

object dl;

fun = gGetProcAddress(dl, "myfunc");

See also: FindStr, LoadLibrary

[LoadLibrary]LoadLibrary::DynamicLibrary

dl = gLoadLibrary(DynamicLibrary, file);

char *file; /* DLL file */

object dl; /* DLL object */

This method is used to open a DLL file and create a WDS object which represents
the loaded library. If the named file does not contain a path, the normal Windows
search path will be searched. If the DLL cannot be found or loaded, NULL will be
returned.

Example:

object dl;

dl = gLoadLibrary(DynamicLibrary, "mydll.dll");

See also: GetProcAddress, Dispose, FindStr

c© 1995-1996 Blake McBride

215

Method Index

A
AddControl::Dialog . 95
AddDlgHandlerAfter::Dialog 96
AddDlgHandlerBefore::Dialog 98
AddEdtHandlerAfter::ComboBox 158
AddEdtHandlerBefore::ComboBox 159
AddHandlerAfter::Control 116
AddHandlerAfter::Window . 36
AddHandlerBefore::Control 118
AddHandlerBefore::Window . 38
AddMenuOption::InternalMenu 90
AddMenuOption::PopupMenu . 92
AddOption::ComboBox . 160
AddOption::ListBox . 148
AddPopupMenu::InternalMenu 91
AddPopupMenu::PopupMenu . 92
AddSeparator::PopupMenu . 93
Alphabetize::ComboBox . 160
Alphabetize::ListBox . 149
AppendFilter::FileDialog 197
Arc::Printer . 71
Associate::Menu . 84
Associate::Window . 38
Attach::CheckBox . 141
Attach::ComboBox . 161
Attach::DateControl . 135
Attach::ListBox . 149
Attach::NumericControl . 128
Attach::RadioButton . 144
Attach::ScrollBar . 169
Attach::TextControl . 123
AutoDispose::Dialog . 98
AutoDispose::Window . 39
AutoShow::Window . 40
AveCharWidth::Font . 181

B
BackBrush::Dialog . 99
BackBrush::Window . 40

C
CallDefaultProc::Control 118
Capitalize::TextControl . 123
CheckFunction::Control . 119
CheckValue::Control . 119
Chord::Printer . 72
CmdLine::Application . 25
Color::Brush . 186
Color::Pen . 191
CompletionFunction::Dialog 99
Copies::PrintDialog . 202

Copy::Brush . 186
Copy::Cursor . 174
Copy::Font . 181
Copy::Icon . 177
Copy::Pen . 191
CtlDoubleValue::Dialog . 100
CtlLongValue::Dialog . 100
CtlShortValue::Dialog . 101
CtlStringValue::Dialog . 102
CtlUnsignedShortValue::Dialog 102
CtlValue::Dialog . 103

D
DateRange::DateControl . 135
DeepCopy::Brush . 187
DeepCopy::Cursor . 174
DeepCopy::Font . 182
DeepCopy::Icon . 178
DeepCopy::Pen . 192
DeepDispose::Brush . 187
DeepDispose::Control . 120
DeepDispose::Cursor . 174
DeepDispose::Dialog . 103
DeepDispose::DynamicLibrary 212
DeepDispose::Font . 182
DeepDispose::Icon . 178
DeepDispose::Menu . 85
DeepDispose::Pen . 192
DeepDispose::Printer . 73
DefaultEdtProcessingMode::ComboBox 161
DefaultProcessingMode::Control 120
DefaultProcessingMode::Window 41
DefExt::FileDialog . 197
Dispose::Brush . 187
Dispose::ColorDialog . 205
Dispose::Control . 121
Dispose::Cursor . 175
Dispose::Dialog . 104
Dispose::DynamicLibrary . 212
Dispose::FileDialog . 198
Dispose::Font . 182
Dispose::FontDialog . 209
Dispose::Icon . 178
Dispose::Menu . 86
Dispose::Pen . 192
Dispose::PopupMenu . 93
Dispose::PrintDialog . 202
Dispose::Printer . 73
Dispose::Window . 41
DoubleValue::NumericControl 128

c© 1995-1996 Blake McBride

216 Dynace Windows Development System Manual

E
Ellipse::Printer . 73
Erase::Window . 42
EraseAll::Window . 42
EraseLines::Window . 43
Error::Application . 25

F
FindStr::DynamicLibrary . 213
Font::FontDialog . 209
FreeAll::DynamicLibrary . 213

G
GetBackBrush::Application 26
GetBackBrush::Dialog . 104
Getch::Window . 43
GetColor::ColorDialog . 206
GetColor::FontDialog . 210
GetControl::Dialog . 105
GetCursor::Application . 26
GetCustomColorPtr::ColorDialog 206
GetFile::FileDialog . 198
GetFont::Application . 27
GetIcon::Application . 27
GetName::Application . 28
GetName::Window . 44
GetOpenFile::FileDialog . 200
GetPageRange::PrintDialog 203
GetParent::Dialog . 105
GetParent::Window . 44
GetPosition::Window . 45
GetProcAddress::DynamicLibrary 213
Gets::Window . 45
GetSaveFile::FileDialog . 200
GetScalingMode::Application 28
GetSelections::ListBox . 150
GetSize::Application . 29
GetSize::Window . 46
GetTag::Dialog . 105
GetTag::Window . 46
GetTextBrush::Application 28
GetTextBrush::Dialog . 106
GetTM::Font . 183
Group::RadioButton . 145

H
Handle::Brush . 187
Handle::Control . 121
Handle::Cursor . 175
Handle::Dialog . 106
Handle::Font . 183
Handle::Icon . 179
Handle::Menu . 86
Handle::Pen . 192
Handle::PopupMenu . 94
Handle::PrintDialog . 203
Handle::Printer . 74
Handle::Window . 47
HelpContents::HelpSystem 195
HelpFile::HelpSystem . 195
HelpInContext::HelpSystem 195
HelpTopic::HelpSystem . 196

I
Increment::ScrollBar . 170
IndexValue::Dialog . 107
InDialog::Dialog . 107
Indirect::ExternalFont . 185
InitialDir::FileDialog . 199
Instance::Application . 29

K
Kbhit::Window . 47

L
Line::Printer . 74
LineHeight::Font . 183
ListIndex::ComboBox . 162
ListIndex::ListBox . 150
Load::ExternalCursor . 176
Load::ExternalIcon . 180
Load::ExternalMenu . 89
Load::SystemFont . 184
LoadCursor::Window . 48
LoadFont::Printer . 75
LoadFont::Window . 48
LoadIcon::Window . 49
LoadLibrary::DynamicLibrary 214
LoadMenu::Window . 49
LoadMenuStr::Window . 50
LoadStr::ExternalCursor . 177
LoadStr::ExternalIcon . 180
LoadStr::ExternalMenu . 89
LoadSys::SystemCursor . 176
LoadSys::SystemIcon . 179
LoadSystemCursor::Window . 51
LoadSystemFont::Printer . 76
LoadSystemFont::Window . 51

c© 1995-1996 Blake McBride

Method Index 217

LoadSystemIcon::Window . 52
LongValue::DateControl . 136
LongValue::NumericControl 129

M
MaxLength::TextControl . 124
MenuFunction::Menu . 87
MenuFunction::PopupMenu . 94
MenuItemMode::Window . 52
Message::Dialog . 108
Message::Window . 53
MessageWithTopic::Dialog 108
MessageWithTopic::Window . 53
MinLength::TextControl . 124

N
New::ChildWindow . 69
New::ColorDialog . 207
New::CustomPen . 194
New::ExternalFont . 185
New::FileDialog . 199
New::FontDialog . 210
New::HatchBrush . 190
New::InternalMenu . 92
New::MainWindow . 68
New::PopupMenu . 94
New::PopupWindow . 70
New::PrintDialog . 204
New::Printer . 76
New::SolidBrush . 189
New::StockBrush . 188
New::StockPen . 193
New::SystemBrush . 189
New::Window . 54
NewBuiltIn::Window . 54
NewCtl::CheckBox . 141
NewCtl::ComboBox . 163
NewCtl::DateControl . 136
NewCtl::ListBox . 151
NewCtl::NumericControl . 129
NewCtl::PushButton . 139
NewCtl::RadioButton . 145
NewCtl::ScrollBar . 170
NewCtl::TextControl . 125
NewDialog::ModalDialog . 113
NewDialog::ModelessDialog 114
NewDialogStr::ModalDialog 113
NewDialogStr::ModelessDialog 115
NewPage::Printer . 77
NewWithHDC::Printer . 77
NumbSelected::ListBox . 151
NumericRange::NumericControl 130

P
Perform::ColorDialog . 207
Perform::Dialog . 109
Perform::FontDialog . 211
Perform::PrintDialog . 204
Perform::PushButton . 139
Pie::Printer . 78
Pop::Menu . 87
PopMenu::Window . 55
PrevInstance::Application 30
Printf::Printer . 79
Printf::Window . 55
ProcessMessages::MainWindow 68
Push::Menu . 87
Puts::Printer . 79
Puts::Window . 56

Q
QueryPrinter::Printer . 80
QuitApplication::Application 30

R
Read::Window . 57
Rectangle::Printer . 81
RemoveAll::ComboBox . 163
RemoveAll::ListBox . 151
RemoveInt::ComboBox . 163
RemoveInt::ListBox . 152
RemoveStr::ComboBox . 164
RemoveStr::ListBox . 152
Required::ComboBox . 164
Required::ListBox . 153
RoundRect::Printer . 81

S
ScaleToCurrentMode::Application 31
ScaleToPixels::Application 31
ScrollBarRange::ScrollBar 171
ScrollHorz::Window . 57
ScrollVert::Window . 58
SetBackBrush::Application 32
SetBlock::Window . 58
SetColor::ColorDialog . 208
SetColor::FontDialog . 211
SetCursor::Application . 33
SetDoubleValue::NumericControl 130
SetFile::FileDialog . 201
SetFlags::ColorDialog . 208
SetFlags::FileDialog . 201
SetFlags::FontDialog . 211
SetFlags::PrintDialog . 205
SetFont::Application . 33
SetFunction::ComboBox . 165
SetFunction::ListBox . 153

c© 1995-1996 Blake McBride

218 Dynace Windows Development System Manual

SetFunction::PushButton . 140
SetIcon::Application . 34
SetLongValue::DateControl 137
SetLongValue::NumericControl 131
SetMaxLines::Window . 59
SetMode::Menu . 88
SetName::Application . 34
SetName::Window . 60
SetParent::Window . 60
SetPosition::Window . 61
SetRaw::Window . 61
SetResult::Dialog . 110
SetScale::Printer . 82
SetScalingMode::Application 34
SetShortValue::CheckBox . 142
SetShortValue::ComboBox . 166
SetShortValue::ListBox . 154
SetShortValue::NumericControl 131
SetShortValue::RadioButton 146
SetShortValue::ScrollBar 172
SetSize::Window . 62
SetStringValue::ComboBox 166
SetStringValue::ListBox . 154
SetStringValue::TextControl 125
SetStyle::Window . 62
SetTag::Dialog . 111
SetTag::Window . 63
SetTextBrush::Application 35
SetTitle::FileDialog . 201
SetTopic::Control . 122
SetTopic::Dialog . 112
SetTopic::HelpSystem . 196
SetTopic::Window . 63
SetUShortValue::NumericControl 132
SetValue::CheckBox . 142
SetValue::ComboBox . 167
SetValue::DateControl . 137
SetValue::ListBox . 155
SetValue::NumericControl 132
SetValue::RadioButton . 146
SetValue::ScrollBar . 172
SetValue::TextControl . 126
ShortValue::CheckBox . 143

ShortValue::ComboBox . 167
ShortValue::ListBox . 156
ShortValue::NumericControl 133
ShortValue::RadioButton . 147
ShortValue::ScrollBar . 173
Show::Application . 36
Show::Window . 64
StringValue::ComboBox . 168
StringValue::ListBox . 156
StringValue::TextControl 126

T
TextBrush::Dialog . 112
TextBrush::Window . 64
TextOut::Printer . 82
TextOut::Window . 65
TextRange::TextControl . 127

U
UnsignedShortValue::NumericControl 133
Update::Window . 65
Use::Printer . 83
Use::Window . 66

V
Value::CheckBox . 143
Value::ComboBox . 168
Value::DateControl . 138
Value::ListBox . 157
Value::NumericControl . 134
Value::RadioButton . 147
Value::ScrollBar . 173
Value::TextControl . 127
ValueAt::ComboBox . 169
ValueAt::ListBox . 157
VertShift::Window . 67

W
Write::Window . 67

c© 1995-1996 Blake McBride

